Compare commits
10 Commits
1bfbb9bc42
...
7fd191edd9
Author | SHA1 | Date |
---|---|---|
|
7fd191edd9 | |
|
696c23195e | |
|
4783952888 | |
|
2d4fa4b591 | |
|
2c372c0aa6 | |
|
f7cac3045a | |
|
ca917012b8 | |
|
3d7b607ac1 | |
|
683b5f31be | |
|
edc42333c6 |
|
@ -0,0 +1,85 @@
|
|||
---
|
||||
language: en
|
||||
datasets:
|
||||
- aesdd
|
||||
tags:
|
||||
- audio
|
||||
- audio-classification
|
||||
- speech
|
||||
license: apache-2.0
|
||||
---
|
||||
~~~
|
||||
# requirement packages
|
||||
!pip install git+https://github.com/huggingface/datasets.git
|
||||
!pip install git+https://github.com/huggingface/transformers.git
|
||||
!pip install torchaudio
|
||||
!pip install librosa
|
||||
|
||||
~~~
|
||||
# prediction
|
||||
~~~
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
||||
import librosa
|
||||
import IPython.display as ipd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
~~~
|
||||
~~~
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
|
||||
config = AutoConfig.from_pretrained(model_name_or_path)
|
||||
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
||||
sampling_rate = feature_extractor.sampling_rate
|
||||
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
||||
~~~
|
||||
~~~
|
||||
def speech_file_to_array_fn(path, sampling_rate):
|
||||
speech_array, _sampling_rate = torchaudio.load(path)
|
||||
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
||||
speech = resampler(speech_array).squeeze().numpy()
|
||||
return speech
|
||||
def predict(path, sampling_rate):
|
||||
speech = speech_file_to_array_fn(path, sampling_rate)
|
||||
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
||||
inputs = {key: inputs[key].to(device) for key in inputs}
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
||||
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
||||
return outputs
|
||||
~~~
|
||||
# prediction
|
||||
~~~
|
||||
# path for a sample
|
||||
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
|
||||
outputs = predict(path, sampling_rate)
|
||||
~~~
|
||||
~~~
|
||||
[{'Emotion': 'anger', 'Score': '78.3%'},
|
||||
{'Emotion': 'disgust', 'Score': '11.7%'},
|
||||
{'Emotion': 'fear', 'Score': '5.4%'},
|
||||
{'Emotion': 'happiness', 'Score': '4.1%'},
|
||||
{'Emotion': 'sadness', 'Score': '0.5%'}]
|
||||
~~~
|
||||
|
||||
## Evaluation
|
||||
The following tables summarize the scores obtained by model overall and per each class.
|
||||
|
||||
|
||||
| Emotions | precision | recall | f1-score | accuracy |
|
||||
|-----------|-----------|--------|----------|----------|
|
||||
| anger | 0.82 | 1.00 | 0.81 | |
|
||||
| disgust | 0.85 | 0.96 | 0.85 | |
|
||||
| fear | 0.78 | 0.88 | 0.80 | |
|
||||
| happiness | 0.84 | 0.71 | 0.78 | |
|
||||
| sadness | 0.86 | 1.00 | 0.79 | |
|
||||
| | | | Overall | 0.806 |
|
||||
|
||||
|
||||
##
|
||||
Colab Notebook
|
||||
https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing
|
|
@ -0,0 +1,104 @@
|
|||
{
|
||||
"_name_or_path": "lighteternal/wav2vec2-large-xlsr-53-greek",
|
||||
"activation_dropout": 0.0,
|
||||
"apply_spec_augment": true,
|
||||
"architectures": [
|
||||
"Wav2Vec2ForSpeechClassification"
|
||||
],
|
||||
"attention_dropout": 0.1,
|
||||
"bos_token_id": 1,
|
||||
"classifier_proj_size": 256,
|
||||
"codevector_dim": 256,
|
||||
"contrastive_logits_temperature": 0.1,
|
||||
"conv_bias": true,
|
||||
"conv_dim": [
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"conv_kernel": [
|
||||
10,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"conv_stride": [
|
||||
5,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"ctc_loss_reduction": "mean",
|
||||
"ctc_zero_infinity": true,
|
||||
"diversity_loss_weight": 0.1,
|
||||
"do_stable_layer_norm": true,
|
||||
"eos_token_id": 2,
|
||||
"feat_extract_activation": "gelu",
|
||||
"feat_extract_dropout": 0.0,
|
||||
"feat_extract_norm": "layer",
|
||||
"feat_proj_dropout": 0.0,
|
||||
"feat_quantizer_dropout": 0.0,
|
||||
"final_dropout": 0.0,
|
||||
"finetuning_task": "wav2vec2_clf",
|
||||
"gradient_checkpointing": true,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout": 0.1,
|
||||
"hidden_size": 1024,
|
||||
"id2label": {
|
||||
"0": "anger",
|
||||
"1": "disgust",
|
||||
"2": "fear",
|
||||
"3": "happiness",
|
||||
"4": "sadness"
|
||||
},
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"label2id": {
|
||||
"anger": 0,
|
||||
"disgust": 1,
|
||||
"fear": 2,
|
||||
"happiness": 3,
|
||||
"sadness": 4
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"layerdrop": 0.1,
|
||||
"mask_channel_length": 10,
|
||||
"mask_channel_min_space": 1,
|
||||
"mask_channel_other": 0.0,
|
||||
"mask_channel_prob": 0.0,
|
||||
"mask_channel_selection": "static",
|
||||
"mask_feature_length": 10,
|
||||
"mask_feature_prob": 0.0,
|
||||
"mask_time_length": 10,
|
||||
"mask_time_min_space": 1,
|
||||
"mask_time_other": 0.0,
|
||||
"mask_time_prob": 0.05,
|
||||
"mask_time_selection": "static",
|
||||
"model_type": "wav2vec2",
|
||||
"num_attention_heads": 16,
|
||||
"num_codevector_groups": 2,
|
||||
"num_codevectors_per_group": 320,
|
||||
"num_conv_pos_embedding_groups": 16,
|
||||
"num_conv_pos_embeddings": 128,
|
||||
"num_feat_extract_layers": 7,
|
||||
"num_hidden_layers": 24,
|
||||
"num_negatives": 100,
|
||||
"pad_token_id": 54,
|
||||
"pooling_mode": "mean",
|
||||
"problem_type": "single_label_classification",
|
||||
"proj_codevector_dim": 256,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.11.0.dev0",
|
||||
"use_weighted_layer_sum": false,
|
||||
"vocab_size": 55
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,70 @@
|
|||
{
|
||||
"best_metric": null,
|
||||
"best_model_checkpoint": null,
|
||||
"epoch": 4.991735537190083,
|
||||
"global_step": 300,
|
||||
"is_hyper_param_search": false,
|
||||
"is_local_process_zero": true,
|
||||
"is_world_process_zero": true,
|
||||
"log_history": [
|
||||
{
|
||||
"epoch": 1.66,
|
||||
"learning_rate": 6.666666666666667e-05,
|
||||
"loss": 1.3311,
|
||||
"step": 100
|
||||
},
|
||||
{
|
||||
"epoch": 1.66,
|
||||
"eval_accuracy": 0.6033057570457458,
|
||||
"eval_loss": 1.0739655494689941,
|
||||
"eval_runtime": 74.6016,
|
||||
"eval_samples_per_second": 1.622,
|
||||
"eval_steps_per_second": 0.416,
|
||||
"step": 100
|
||||
},
|
||||
{
|
||||
"epoch": 3.33,
|
||||
"learning_rate": 3.3333333333333335e-05,
|
||||
"loss": 0.6235,
|
||||
"step": 200
|
||||
},
|
||||
{
|
||||
"epoch": 3.33,
|
||||
"eval_accuracy": 0.8512396812438965,
|
||||
"eval_loss": 0.47899967432022095,
|
||||
"eval_runtime": 71.6672,
|
||||
"eval_samples_per_second": 1.688,
|
||||
"eval_steps_per_second": 0.433,
|
||||
"step": 200
|
||||
},
|
||||
{
|
||||
"epoch": 4.99,
|
||||
"learning_rate": 0.0,
|
||||
"loss": 0.2154,
|
||||
"step": 300
|
||||
},
|
||||
{
|
||||
"epoch": 4.99,
|
||||
"eval_accuracy": 0.9008264541625977,
|
||||
"eval_loss": 0.3769935369491577,
|
||||
"eval_runtime": 73.3118,
|
||||
"eval_samples_per_second": 1.65,
|
||||
"eval_steps_per_second": 0.423,
|
||||
"step": 300
|
||||
},
|
||||
{
|
||||
"epoch": 4.99,
|
||||
"step": 300,
|
||||
"total_flos": 4.279570856908188e+17,
|
||||
"train_loss": 0.7233316548665365,
|
||||
"train_runtime": 4793.1545,
|
||||
"train_samples_per_second": 0.504,
|
||||
"train_steps_per_second": 0.063
|
||||
}
|
||||
],
|
||||
"max_steps": 300,
|
||||
"num_train_epochs": 5,
|
||||
"total_flos": 4.279570856908188e+17,
|
||||
"trial_name": null,
|
||||
"trial_params": null
|
||||
}
|
Loading…
Reference in New Issue