harshit345/xlsr-wav2vec-speech-emotion-recognition is a forked repo from huggingface. License: apache-2-0
Go to file
harshit katyal 7fd191edd9 Update README.md 2021-12-12 20:53:33 +00:00
.gitattributes initial commit 2021-12-12 20:04:26 +00:00
README.md Update README.md 2021-12-12 20:53:33 +00:00
all_results.json Upload all_results.json 2021-12-12 20:22:08 +00:00
config.json Upload config.json 2021-12-12 20:22:48 +00:00
eval_results.json Upload eval_results.json 2021-12-12 20:21:13 +00:00
preprocessor_config.json Upload preprocessor_config.json 2021-12-12 20:21:49 +00:00
pytorch_model.bin Upload pytorch_model.bin with git-lfs 2021-12-12 20:37:02 +00:00
train_results.json Upload train_results.json 2021-12-12 20:20:36 +00:00
trainer_state.json Upload trainer_state.json 2021-12-12 20:27:11 +00:00
training_args.bin Upload training_args.bin with git-lfs 2021-12-12 20:20:58 +00:00

README.md

language datasets tags license
en
aesdd
audio
audio-classification
speech
apache-2.0
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa

prediction

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech
def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}
    with torch.no_grad():
        logits = model(**inputs).logits
    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
    return outputs

prediction

# path for a sample
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'   
outputs = predict(path, sampling_rate)
[{'Emotion': 'anger', 'Score': '78.3%'},
 {'Emotion': 'disgust', 'Score': '11.7%'},
 {'Emotion': 'fear', 'Score': '5.4%'},
 {'Emotion': 'happiness', 'Score': '4.1%'},
 {'Emotion': 'sadness', 'Score': '0.5%'}]

Evaluation

The following tables summarize the scores obtained by model overall and per each class.

Emotions precision recall f1-score accuracy
anger 0.82 1.00 0.81
disgust 0.85 0.96 0.85
fear 0.78 0.88 0.80
happiness 0.84 0.71 0.78
sadness 0.86 1.00 0.79
Overall 0.806

Colab Notebook https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing