Upload README.md
This commit is contained in:
parent
edc42333c6
commit
683b5f31be
|
@ -0,0 +1,81 @@
|
|||
---
|
||||
language: el
|
||||
datasets:
|
||||
- aesdd
|
||||
tags:
|
||||
- audio
|
||||
- audio-classification
|
||||
- speech
|
||||
license: apache-2.0
|
||||
---
|
||||
|
||||
|
||||
~~~
|
||||
# requirement packages
|
||||
!pip install git+https://github.com/huggingface/datasets.git
|
||||
!pip install git+https://github.com/huggingface/transformers.git
|
||||
!pip install torchaudio
|
||||
!pip install librosa
|
||||
!git clone https://github.com/m3hrdadfi/soxan
|
||||
cd soxan
|
||||
~~~
|
||||
|
||||
|
||||
# prediction
|
||||
~~~
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
||||
|
||||
import librosa
|
||||
import IPython.display as ipd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
~~~
|
||||
|
||||
~~~
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition"
|
||||
config = AutoConfig.from_pretrained(model_name_or_path)
|
||||
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
||||
sampling_rate = feature_extractor.sampling_rate
|
||||
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
||||
~~~
|
||||
|
||||
~~~
|
||||
def speech_file_to_array_fn(path, sampling_rate):
|
||||
speech_array, _sampling_rate = torchaudio.load(path)
|
||||
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
||||
speech = resampler(speech_array).squeeze().numpy()
|
||||
return speech
|
||||
|
||||
|
||||
def predict(path, sampling_rate):
|
||||
speech = speech_file_to_array_fn(path, sampling_rate)
|
||||
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
||||
inputs = {key: inputs[key].to(device) for key in inputs}
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
|
||||
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
||||
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
||||
return outputs
|
||||
~~~
|
||||
|
||||
# prediction
|
||||
~~~
|
||||
# path for a sample
|
||||
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
|
||||
outputs = predict(path, sampling_rate)
|
||||
~~~
|
||||
|
||||
~~~
|
||||
[{'Emotion': 'anger', 'Score': '98.3%'},
|
||||
{'Emotion': 'disgust', 'Score': '0.0%'},
|
||||
{'Emotion': 'fear', 'Score': '0.4%'},
|
||||
{'Emotion': 'happiness', 'Score': '0.7%'},
|
||||
{'Emotion': 'sadness', 'Score': '0.5%'}]
|
||||
~~~
|
Loading…
Reference in New Issue