Update README.md
This commit is contained in:
parent
ca917012b8
commit
f7cac3045a
88
README.md
88
README.md
|
@ -1,81 +1,89 @@
|
||||||
---
|
---
|
||||||
language: el
|
language: en
|
||||||
datasets:
|
datasets: Toronto emotional speech set (TESS)(https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess)
|
||||||
- aesdd
|
|
||||||
tags:
|
tags:
|
||||||
- audio
|
- audio
|
||||||
- audio-classification
|
- automatic-speech-recognition
|
||||||
- speech
|
- speech
|
||||||
|
- speech-emotion-recognition
|
||||||
license: apache-2.0
|
license: apache-2.0
|
||||||
---
|
---
|
||||||
|
# Emotion Recognition in Speech using Wav2Vec 2.0
|
||||||
|
## How to use
|
||||||
~~~
|
### Requirements
|
||||||
|
```bash
|
||||||
# requirement packages
|
# requirement packages
|
||||||
!pip install git+https://github.com/huggingface/datasets.git
|
!pip install git+https://github.com/huggingface/datasets.git
|
||||||
!pip install git+https://github.com/huggingface/transformers.git
|
!pip install git+https://github.com/huggingface/transformers.git
|
||||||
!pip install torchaudio
|
!pip install torchaudio
|
||||||
!pip install librosa
|
!pip install librosa
|
||||||
!git clone https://github.com/m3hrdadfi/soxan
|
```
|
||||||
cd soxan
|
### Prediction
|
||||||
~~~
|
```python
|
||||||
|
|
||||||
|
|
||||||
# prediction
|
|
||||||
~~~
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
||||||
|
|
||||||
import librosa
|
import librosa
|
||||||
import IPython.display as ipd
|
import IPython.display as ipd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
~~~
|
```
|
||||||
|
```python
|
||||||
~~~
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition"
|
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
|
||||||
config = AutoConfig.from_pretrained(model_name_or_path)
|
config = AutoConfig.from_pretrained(model_name_or_path)
|
||||||
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
||||||
sampling_rate = feature_extractor.sampling_rate
|
sampling_rate = feature_extractor.sampling_rate
|
||||||
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
||||||
~~~
|
```
|
||||||
|
```python
|
||||||
~~~
|
|
||||||
def speech_file_to_array_fn(path, sampling_rate):
|
def speech_file_to_array_fn(path, sampling_rate):
|
||||||
speech_array, _sampling_rate = torchaudio.load(path)
|
speech_array, _sampling_rate = torchaudio.load(path)
|
||||||
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
||||||
speech = resampler(speech_array).squeeze().numpy()
|
speech = resampler(speech_array).squeeze().numpy()
|
||||||
return speech
|
return speech
|
||||||
|
|
||||||
|
|
||||||
def predict(path, sampling_rate):
|
def predict(path, sampling_rate):
|
||||||
speech = speech_file_to_array_fn(path, sampling_rate)
|
speech = speech_file_to_array_fn(path, sampling_rate)
|
||||||
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
||||||
inputs = {key: inputs[key].to(device) for key in inputs}
|
inputs = {key: inputs[key].to(device) for key in inputs}
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logits = model(**inputs).logits
|
logits = model(**inputs).logits
|
||||||
|
|
||||||
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
||||||
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
||||||
return outputs
|
return outputs
|
||||||
~~~
|
```
|
||||||
|
```python
|
||||||
# prediction
|
path = "/path/to/disgust.wav"
|
||||||
~~~
|
|
||||||
# path for a sample
|
|
||||||
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
|
|
||||||
outputs = predict(path, sampling_rate)
|
outputs = predict(path, sampling_rate)
|
||||||
~~~
|
```
|
||||||
|
```bash
|
||||||
|
[
|
||||||
|
{'Emotion': 'anger', 'Score': '12.2%'},
|
||||||
|
{'Emotion': 'disgust', 'Score': '78.8%'},
|
||||||
|
{'Emotion': 'fear', 'Score': '7.2%'},
|
||||||
|
{'Emotion': 'happiness', 'Score': '1.3%'},
|
||||||
|
{'Emotion': 'sadness', 'Score': '1.5%'}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
~~~
|
|
||||||
[{'Emotion': 'anger', 'Score': '98.3%'},
|
## Evaluation
|
||||||
{'Emotion': 'disgust', 'Score': '0.0%'},
|
The following tables summarize the scores obtained by model overall and per each class.
|
||||||
{'Emotion': 'fear', 'Score': '0.4%'},
|
|
||||||
{'Emotion': 'happiness', 'Score': '0.7%'},
|
|
||||||
{'Emotion': 'sadness', 'Score': '0.5%'}]
|
| Emotions | precision | recall | f1-score | accuracy |
|
||||||
~~~
|
|-----------|-----------|--------|----------|----------|
|
||||||
|
| anger | 0.82 | 1.00 | 0.81 | |
|
||||||
|
| disgust | 0.85 | 0.96 | 0.85 | |
|
||||||
|
| fear | 0.78 | 0.88 | 0.80 | |
|
||||||
|
| happiness | 0.84 | 0.71 | 0.78 | |
|
||||||
|
| sadness | 0.86 | 1.00 | 0.79 | |
|
||||||
|
| | | | Overall | 0.806 |
|
||||||
|
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
Colab Notebook
|
||||||
|
https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing
|
Loading…
Reference in New Issue