diff --git a/README.md b/README.md index 80de7f5..5a3c225 100644 --- a/README.md +++ b/README.md @@ -1,81 +1,89 @@ --- -language: el -datasets: -- aesdd +language: en +datasets: Toronto emotional speech set (TESS)(https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess) tags: - audio -- audio-classification +- automatic-speech-recognition - speech +- speech-emotion-recognition license: apache-2.0 --- - - -~~~ +# Emotion Recognition in Speech using Wav2Vec 2.0 +## How to use +### Requirements +```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa -!git clone https://github.com/m3hrdadfi/soxan -cd soxan -~~~ - - -# prediction -~~~ +``` +### Prediction +```python import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor - import librosa import IPython.display as ipd import numpy as np import pandas as pd -~~~ - -~~~ +``` +```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition" +model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) -~~~ - -~~~ +``` +```python def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech - - def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} - with torch.no_grad(): logits = model(**inputs).logits - scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs -~~~ - -# prediction -~~~ -# path for a sample -path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' +``` +```python +path = "/path/to/disgust.wav" outputs = predict(path, sampling_rate) -~~~ +``` +```bash +[ +{'Emotion': 'anger', 'Score': '12.2%'}, +{'Emotion': 'disgust', 'Score': '78.8%'}, +{'Emotion': 'fear', 'Score': '7.2%'}, +{'Emotion': 'happiness', 'Score': '1.3%'}, +{'Emotion': 'sadness', 'Score': '1.5%'} +] +``` -~~~ -[{'Emotion': 'anger', 'Score': '98.3%'}, - {'Emotion': 'disgust', 'Score': '0.0%'}, - {'Emotion': 'fear', 'Score': '0.4%'}, - {'Emotion': 'happiness', 'Score': '0.7%'}, - {'Emotion': 'sadness', 'Score': '0.5%'}] - ~~~ \ No newline at end of file + +## Evaluation +The following tables summarize the scores obtained by model overall and per each class. + + +| Emotions | precision | recall | f1-score | accuracy | +|-----------|-----------|--------|----------|----------| +| anger | 0.82 | 1.00 | 0.81 | | +| disgust | 0.85 | 0.96 | 0.85 | | +| fear | 0.78 | 0.88 | 0.80 | | +| happiness | 0.84 | 0.71 | 0.78 | | +| sadness | 0.86 | 1.00 | 0.79 | | +| | | | Overall | 0.806 | + + +## + +Colab Notebook +https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing \ No newline at end of file