From 683b5f31bec1f6110150d66bf74a6b1ad8fc5be4 Mon Sep 17 00:00:00 2001 From: harshit katyal Date: Sun, 12 Dec 2021 20:26:43 +0000 Subject: [PATCH] Upload README.md --- README.md | 81 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 0000000..80de7f5 --- /dev/null +++ b/README.md @@ -0,0 +1,81 @@ +--- +language: el +datasets: +- aesdd +tags: +- audio +- audio-classification +- speech +license: apache-2.0 +--- + + +~~~ +# requirement packages +!pip install git+https://github.com/huggingface/datasets.git +!pip install git+https://github.com/huggingface/transformers.git +!pip install torchaudio +!pip install librosa +!git clone https://github.com/m3hrdadfi/soxan +cd soxan +~~~ + + +# prediction +~~~ +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchaudio +from transformers import AutoConfig, Wav2Vec2FeatureExtractor + +import librosa +import IPython.display as ipd +import numpy as np +import pandas as pd +~~~ + +~~~ +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") +model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition" +config = AutoConfig.from_pretrained(model_name_or_path) +feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) +sampling_rate = feature_extractor.sampling_rate +model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) +~~~ + +~~~ +def speech_file_to_array_fn(path, sampling_rate): + speech_array, _sampling_rate = torchaudio.load(path) + resampler = torchaudio.transforms.Resample(_sampling_rate) + speech = resampler(speech_array).squeeze().numpy() + return speech + + +def predict(path, sampling_rate): + speech = speech_file_to_array_fn(path, sampling_rate) + inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) + inputs = {key: inputs[key].to(device) for key in inputs} + + with torch.no_grad(): + logits = model(**inputs).logits + + scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] + outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] + return outputs +~~~ + +# prediction +~~~ +# path for a sample +path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' +outputs = predict(path, sampling_rate) +~~~ + +~~~ +[{'Emotion': 'anger', 'Score': '98.3%'}, + {'Emotion': 'disgust', 'Score': '0.0%'}, + {'Emotion': 'fear', 'Score': '0.4%'}, + {'Emotion': 'happiness', 'Score': '0.7%'}, + {'Emotion': 'sadness', 'Score': '0.5%'}] + ~~~ \ No newline at end of file