2021-12-12 20:26:43 +00:00
|
|
|
---
|
2021-12-12 20:42:26 +00:00
|
|
|
language: en
|
2021-12-12 20:43:57 +00:00
|
|
|
datasets:
|
|
|
|
- aesdd
|
2021-12-12 20:26:43 +00:00
|
|
|
tags:
|
|
|
|
- audio
|
2021-12-12 20:43:57 +00:00
|
|
|
- audio-classification
|
2021-12-12 20:26:43 +00:00
|
|
|
- speech
|
|
|
|
license: apache-2.0
|
|
|
|
---
|
2021-12-12 20:43:57 +00:00
|
|
|
~~~
|
2021-12-12 20:26:43 +00:00
|
|
|
# requirement packages
|
|
|
|
!pip install git+https://github.com/huggingface/datasets.git
|
|
|
|
!pip install git+https://github.com/huggingface/transformers.git
|
|
|
|
!pip install torchaudio
|
|
|
|
!pip install librosa
|
2021-12-12 20:48:46 +00:00
|
|
|
|
2021-12-12 20:43:57 +00:00
|
|
|
~~~
|
|
|
|
# prediction
|
|
|
|
~~~
|
2021-12-12 20:26:43 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torchaudio
|
|
|
|
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
|
|
|
import librosa
|
|
|
|
import IPython.display as ipd
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
2021-12-12 20:43:57 +00:00
|
|
|
~~~
|
|
|
|
~~~
|
2021-12-12 20:26:43 +00:00
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
2021-12-12 20:53:33 +00:00
|
|
|
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
|
2021-12-12 20:26:43 +00:00
|
|
|
config = AutoConfig.from_pretrained(model_name_or_path)
|
|
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
|
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
|
|
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
2021-12-12 20:43:57 +00:00
|
|
|
~~~
|
|
|
|
~~~
|
2021-12-12 20:26:43 +00:00
|
|
|
def speech_file_to_array_fn(path, sampling_rate):
|
|
|
|
speech_array, _sampling_rate = torchaudio.load(path)
|
|
|
|
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
|
|
|
speech = resampler(speech_array).squeeze().numpy()
|
|
|
|
return speech
|
|
|
|
def predict(path, sampling_rate):
|
|
|
|
speech = speech_file_to_array_fn(path, sampling_rate)
|
|
|
|
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
|
|
|
inputs = {key: inputs[key].to(device) for key in inputs}
|
|
|
|
with torch.no_grad():
|
|
|
|
logits = model(**inputs).logits
|
|
|
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
|
|
|
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
|
|
|
return outputs
|
2021-12-12 20:43:57 +00:00
|
|
|
~~~
|
|
|
|
# prediction
|
|
|
|
~~~
|
|
|
|
# path for a sample
|
|
|
|
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
|
2021-12-12 20:26:43 +00:00
|
|
|
outputs = predict(path, sampling_rate)
|
2021-12-12 20:43:57 +00:00
|
|
|
~~~
|
|
|
|
~~~
|
2021-12-12 20:53:33 +00:00
|
|
|
[{'Emotion': 'anger', 'Score': '78.3%'},
|
|
|
|
{'Emotion': 'disgust', 'Score': '11.7%'},
|
|
|
|
{'Emotion': 'fear', 'Score': '5.4%'},
|
|
|
|
{'Emotion': 'happiness', 'Score': '4.1%'},
|
2021-12-12 20:43:57 +00:00
|
|
|
{'Emotion': 'sadness', 'Score': '0.5%'}]
|
2021-12-12 20:46:20 +00:00
|
|
|
~~~
|
|
|
|
|
|
|
|
## Evaluation
|
|
|
|
The following tables summarize the scores obtained by model overall and per each class.
|
|
|
|
|
|
|
|
|
|
|
|
| Emotions | precision | recall | f1-score | accuracy |
|
|
|
|
|-----------|-----------|--------|----------|----------|
|
|
|
|
| anger | 0.82 | 1.00 | 0.81 | |
|
|
|
|
| disgust | 0.85 | 0.96 | 0.85 | |
|
|
|
|
| fear | 0.78 | 0.88 | 0.80 | |
|
|
|
|
| happiness | 0.84 | 0.71 | 0.78 | |
|
|
|
|
| sadness | 0.86 | 1.00 | 0.79 | |
|
|
|
|
| | | | Overall | 0.806 |
|
|
|
|
|
|
|
|
|
2021-12-12 20:47:36 +00:00
|
|
|
##
|
|
|
|
Colab Notebook
|
|
|
|
https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing
|