twitter-xlm-roberta-base-se.../README.md

93 lines
2.3 KiB
Markdown
Raw Normal View History

2021-04-17 06:25:37 +00:00
---
language: multilingual
widget:
- text: "T'estimo!"
- text: "I love you!"
- text: "I hate you"
- text: "Mahal kita!"
- text: "사랑해!"
- text: "난 너가 싫어"
---
# twitter-XLM-roBERTa-base for Sentiment Analysis
2021-04-16 23:47:43 +00:00
This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis in
2021-04-16 23:47:43 +00:00
- Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://...).
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/xlm-t).
2021-04-17 06:25:37 +00:00
## Example Pipeline
```python
from transformers import pipeline
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("T'estimo!")
```
2021-04-17 06:29:06 +00:00
```
2021-04-17 06:29:57 +00:00
[{'label': 'Positive', 'score': 0.6600581407546997}]
2021-04-17 06:29:06 +00:00
```
2021-04-17 06:25:37 +00:00
## Full classification example
```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
2021-04-17 06:26:57 +00:00
MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
2021-04-17 06:25:37 +00:00
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)
text = "Good night 😊"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Good night 😊"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
2021-04-17 06:25:37 +00:00
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
2021-04-17 06:25:37 +00:00
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")
```
Output:
```
2021-04-17 06:25:37 +00:00
1) Positive 0.7673
2) Neutral 0.2015
3) Negative 0.0313
```