Update README.md
This commit is contained in:
parent
1f8684fe27
commit
7a0cada18e
48
README.md
48
README.md
|
@ -1,3 +1,15 @@
|
|||
---
|
||||
language: multilingual
|
||||
widget:
|
||||
- text: "T'estimo!"
|
||||
- text: "I love you!"
|
||||
- text: "I hate you"
|
||||
- text: "Mahal kita!"
|
||||
- text: "사랑해!"
|
||||
- text: "난 너가 싫어"
|
||||
---
|
||||
|
||||
|
||||
# twitter-XLM-roBERTa-base for Sentiment Analysis
|
||||
|
||||
This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis in
|
||||
|
@ -5,7 +17,16 @@ This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for senti
|
|||
- Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://...).
|
||||
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/xlm-t).
|
||||
|
||||
## Example of classification
|
||||
## Example Pipeline
|
||||
```python
|
||||
from transformers import pipeline
|
||||
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
||||
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
||||
|
||||
sentiment_task("T'estimo!")
|
||||
```
|
||||
|
||||
## Full classification example
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
|
@ -13,32 +34,20 @@ from transformers import TFAutoModelForSequenceClassification
|
|||
from transformers import AutoTokenizer
|
||||
import numpy as np
|
||||
from scipy.special import softmax
|
||||
import csv
|
||||
import urllib.request
|
||||
|
||||
# Preprocess text (username and link placeholders)
|
||||
def preprocess(text):
|
||||
new_text = []
|
||||
|
||||
|
||||
for t in text.split(" "):
|
||||
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
||||
t = 'http' if t.startswith('http') else t
|
||||
new_text.append(t)
|
||||
return " ".join(new_text)
|
||||
|
||||
MODEL = f"/home/jupyter/misc/tweeteval/TweetEval_models/xlm-twitter/twitter-xlm-roberta-base-sentiment"
|
||||
|
||||
MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||
|
||||
# download label mapping
|
||||
labels=[]
|
||||
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/sentiment/mapping.txt"
|
||||
with urllib.request.urlopen(mapping_link) as f:
|
||||
html = f.read().decode('utf-8').split("\\
|
||||
")
|
||||
csvreader = csv.reader(html, delimiter='\\\\t')
|
||||
labels = [row[1] for row in csvreader if len(row) > 1]
|
||||
config = AutoConfig.from_pretrained(MODEL)
|
||||
|
||||
# PT
|
||||
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||
|
@ -61,10 +70,11 @@ scores = softmax(scores)
|
|||
# scores = output[0][0].numpy()
|
||||
# scores = softmax(scores)
|
||||
|
||||
# Print labels and scores
|
||||
ranking = np.argsort(scores)
|
||||
ranking = ranking[::-1]
|
||||
for i in range(scores.shape[0]):
|
||||
l = labels[ranking[i]]
|
||||
l = config.id2label[ranking[i]]
|
||||
s = scores[ranking[i]]
|
||||
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
||||
|
||||
|
@ -73,8 +83,8 @@ for i in range(scores.shape[0]):
|
|||
Output:
|
||||
|
||||
```
|
||||
1) positive 0.76726073
|
||||
2) neutral 0.201
|
||||
3) negative 0.0312
|
||||
1) Positive 0.7673
|
||||
2) Neutral 0.2015
|
||||
3) Negative 0.0313
|
||||
```
|
||||
|
||||
|
|
Loading…
Reference in New Issue