Adding twitter-xlm sentiment classifiers
This commit is contained in:
parent
1565dd4c0b
commit
2508de597a
|
@ -0,0 +1,95 @@
|
|||
# twitter-XLM-roBERTa-base for Sentiment Analysis
|
||||
|
||||
|
||||
|
||||
TODO: create model card
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis with the TweetEval benchmark.
|
||||
|
||||
- Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
||||
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
||||
|
||||
## Example of classification
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
from transformers import TFAutoModelForSequenceClassification
|
||||
from transformers import AutoTokenizer
|
||||
import numpy as np
|
||||
from scipy.special import softmax
|
||||
import csv
|
||||
import urllib.request
|
||||
|
||||
# Preprocess text (username and link placeholders)
|
||||
def preprocess(text):
|
||||
new_text = []
|
||||
|
||||
|
||||
for t in text.split(" "):
|
||||
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
||||
t = 'http' if t.startswith('http') else t
|
||||
new_text.append(t)
|
||||
return " ".join(new_text)
|
||||
|
||||
# Tasks:
|
||||
# emoji, emotion, hate, irony, offensive, sentiment
|
||||
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary
|
||||
|
||||
task='sentiment'
|
||||
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||
|
||||
# download label mapping
|
||||
labels=[]
|
||||
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
|
||||
with urllib.request.urlopen(mapping_link) as f:
|
||||
html = f.read().decode('utf-8').split("\
|
||||
")
|
||||
csvreader = csv.reader(html, delimiter='\\t')
|
||||
labels = [row[1] for row in csvreader if len(row) > 1]
|
||||
|
||||
# PT
|
||||
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||
model.save_pretrained(MODEL)
|
||||
|
||||
text = "Good night 😊"
|
||||
text = preprocess(text)
|
||||
encoded_input = tokenizer(text, return_tensors='pt')
|
||||
output = model(**encoded_input)
|
||||
scores = output[0][0].detach().numpy()
|
||||
scores = softmax(scores)
|
||||
|
||||
# # TF
|
||||
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
||||
# model.save_pretrained(MODEL)
|
||||
|
||||
# text = "Good night 😊"
|
||||
# encoded_input = tokenizer(text, return_tensors='tf')
|
||||
# output = model(encoded_input)
|
||||
# scores = output[0][0].numpy()
|
||||
# scores = softmax(scores)
|
||||
|
||||
ranking = np.argsort(scores)
|
||||
ranking = ranking[::-1]
|
||||
for i in range(scores.shape[0]):
|
||||
l = labels[ranking[i]]
|
||||
s = scores[ranking[i]]
|
||||
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
||||
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
1) positive 0.8466
|
||||
2) neutral 0.1458
|
||||
3) negative 0.0076
|
||||
```
|
||||
|
Loading…
Reference in New Issue