Update README.md
This commit is contained in:
parent
462822078f
commit
f6d2d95250
71
README.md
71
README.md
|
@ -12,34 +12,89 @@ as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework.
|
|||
|
||||
The model can be used as follows:
|
||||
|
||||
In PyTorch
|
||||
```python
|
||||
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
||||
from transformers.testing_utils import require_sentorch_device
|
||||
|
||||
|
||||
loc = "ydshieh/vit-gpt2-coco-en"
|
||||
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||
model = VisionEncoderDecoderModel.from_pretrained(loc)
|
||||
model.eval()
|
||||
|
||||
|
||||
def predict(image):
|
||||
|
||||
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
||||
|
||||
with torch.no_grad():
|
||||
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
||||
|
||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
||||
return preds
|
||||
|
||||
|
||||
# We will verify our results on an image of cute cats
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
with Image.open(requests.get(url, stream=True).raw) as image:
|
||||
preds = predict(image)
|
||||
|
||||
print(preds)
|
||||
# should produce
|
||||
# ['a cat laying on top of a couch next to another cat']
|
||||
|
||||
```
|
||||
|
||||
In Flax
|
||||
```python
|
||||
|
||||
import jax
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
||||
|
||||
|
||||
loc = "ydshieh/vit-gpt2-coco-en"
|
||||
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
||||
|
||||
# We will verify our results on an image of cute cats
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
with Image.open(requests.get(url, stream=True).raw) as img:
|
||||
pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values
|
||||
gen_kwargs = {"max_length": 16, "num_beams": 4}
|
||||
|
||||
def generate_step(pixel_values):
|
||||
|
||||
output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences
|
||||
# This takes sometime when compiling the first time, but the subsequent inference will be much faster
|
||||
@jax.jit
|
||||
def generate(pixel_values):
|
||||
output_ids = model.generate(pixel_values, **gen_kwargs).sequences
|
||||
return output_ids
|
||||
|
||||
|
||||
def predict(image):
|
||||
|
||||
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
||||
output_ids = generate(pixel_values)
|
||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
||||
return preds
|
||||
|
||||
preds = generate_step(pixel_values)
|
||||
print(preds)
|
||||
|
||||
# We will verify our results on an image of cute cats
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
with Image.open(requests.get(url, stream=True).raw) as image:
|
||||
preds = predict(image)
|
||||
|
||||
print(preds)
|
||||
# should produce
|
||||
# ['a cat laying on top of a couch next to another cat']
|
||||
|
||||
|
|
Loading…
Reference in New Issue