From f6d2d952505ec2397229db7c5a1b11f2e195b967 Mon Sep 17 00:00:00 2001 From: Yih-Dar SHIEH Date: Mon, 25 Oct 2021 09:05:21 +0000 Subject: [PATCH] Update README.md --- README.md | 77 +++++++++++++++++++++++++++++++++++++++++++++++-------- 1 file changed, 66 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 93382cb..c4eb860 100644 --- a/README.md +++ b/README.md @@ -12,35 +12,90 @@ as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework. The model can be used as follows: +In PyTorch ```python +import torch +import requests +from PIL import Image +from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel +from transformers.testing_utils import require_sentorch_device + + +loc = "ydshieh/vit-gpt2-coco-en" + +feature_extractor = ViTFeatureExtractor.from_pretrained(loc) +tokenizer = AutoTokenizer.from_pretrained(loc) +model = VisionEncoderDecoderModel.from_pretrained(loc) +model.eval() + + +def predict(image): + + pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values + + with torch.no_grad(): + output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences + + preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) + preds = [pred.strip() for pred in preds] + + return preds + + +# We will verify our results on an image of cute cats +url = "http://images.cocodataset.org/val2017/000000039769.jpg" +with Image.open(requests.get(url, stream=True).raw) as image: + preds = predict(image) + +print(preds) +# should produce +# ['a cat laying on top of a couch next to another cat'] + +``` + +In Flax +```python + +import jax import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel + loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) -# We will verify our results on an image of cute cats -url = "http://images.cocodataset.org/val2017/000000039769.jpg" -with Image.open(requests.get(url, stream=True).raw) as img: - pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values +gen_kwargs = {"max_length": 16, "num_beams": 4} -def generate_step(pixel_values): - output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences +# This takes sometime when compiling the first time, but the subsequent inference will be much faster +@jax.jit +def generate(pixel_values): + output_ids = model.generate(pixel_values, **gen_kwargs).sequences + return output_ids + + +def predict(image): + + pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values + output_ids = generate(pixel_values) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] - + return preds - -preds = generate_step(pixel_values) + + +# We will verify our results on an image of cute cats +url = "http://images.cocodataset.org/val2017/000000039769.jpg" +with Image.open(requests.get(url, stream=True).raw) as image: + preds = predict(image) + print(preds) - # should produce # ['a cat laying on top of a couch next to another cat'] -``` +``` \ No newline at end of file