Update README.md
This commit is contained in:
parent
462822078f
commit
f6d2d95250
77
README.md
77
README.md
|
@ -12,35 +12,90 @@ as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework.
|
||||||
|
|
||||||
The model can be used as follows:
|
The model can be used as follows:
|
||||||
|
|
||||||
|
In PyTorch
|
||||||
```python
|
```python
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
||||||
|
from transformers.testing_utils import require_sentorch_device
|
||||||
|
|
||||||
|
|
||||||
|
loc = "ydshieh/vit-gpt2-coco-en"
|
||||||
|
|
||||||
|
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||||
|
model = VisionEncoderDecoderModel.from_pretrained(loc)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
def predict(image):
|
||||||
|
|
||||||
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
||||||
|
|
||||||
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||||
|
preds = [pred.strip() for pred in preds]
|
||||||
|
|
||||||
|
return preds
|
||||||
|
|
||||||
|
|
||||||
|
# We will verify our results on an image of cute cats
|
||||||
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||||
|
with Image.open(requests.get(url, stream=True).raw) as image:
|
||||||
|
preds = predict(image)
|
||||||
|
|
||||||
|
print(preds)
|
||||||
|
# should produce
|
||||||
|
# ['a cat laying on top of a couch next to another cat']
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
In Flax
|
||||||
|
```python
|
||||||
|
|
||||||
|
import jax
|
||||||
import requests
|
import requests
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
||||||
|
|
||||||
|
|
||||||
loc = "ydshieh/vit-gpt2-coco-en"
|
loc = "ydshieh/vit-gpt2-coco-en"
|
||||||
|
|
||||||
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(loc)
|
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||||||
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
||||||
|
|
||||||
# We will verify our results on an image of cute cats
|
gen_kwargs = {"max_length": 16, "num_beams": 4}
|
||||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
||||||
with Image.open(requests.get(url, stream=True).raw) as img:
|
|
||||||
pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values
|
|
||||||
|
|
||||||
def generate_step(pixel_values):
|
|
||||||
|
|
||||||
output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences
|
# This takes sometime when compiling the first time, but the subsequent inference will be much faster
|
||||||
|
@jax.jit
|
||||||
|
def generate(pixel_values):
|
||||||
|
output_ids = model.generate(pixel_values, **gen_kwargs).sequences
|
||||||
|
return output_ids
|
||||||
|
|
||||||
|
|
||||||
|
def predict(image):
|
||||||
|
|
||||||
|
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
||||||
|
output_ids = generate(pixel_values)
|
||||||
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||||||
preds = [pred.strip() for pred in preds]
|
preds = [pred.strip() for pred in preds]
|
||||||
|
|
||||||
return preds
|
return preds
|
||||||
|
|
||||||
preds = generate_step(pixel_values)
|
|
||||||
|
# We will verify our results on an image of cute cats
|
||||||
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||||
|
with Image.open(requests.get(url, stream=True).raw) as image:
|
||||||
|
preds = predict(image)
|
||||||
|
|
||||||
print(preds)
|
print(preds)
|
||||||
|
|
||||||
# should produce
|
# should produce
|
||||||
# ['a cat laying on top of a couch next to another cat']
|
# ['a cat laying on top of a couch next to another cat']
|
||||||
|
|
||||||
```
|
```
|
Loading…
Reference in New Issue