add gfp-gan

This commit is contained in:
songw 2023-04-06 16:53:15 +08:00
parent b06fcd781c
commit 20537b20fa
6 changed files with 105 additions and 0 deletions

BIN
gfp-gan/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

BIN
gfp-gan/2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

BIN
gfp-gan/4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 298 KiB

19
gfp-gan/Dockerfile Normal file
View File

@ -0,0 +1,19 @@
FROM python:3.8.4-slim
WORKDIR /app
COPY requirements.txt /app
RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/
RUN apt-get update && \
apt-get upgrade -y && \
apt-get install -y git
RUN apt-get install -y tk
RUN pip3 install --trusted-host pypi.python.org -r requirements.txt
COPY . /app
CMD ["python", "gfp_gan.py"]

77
gfp-gan/gfp_gan.py Normal file
View File

@ -0,0 +1,77 @@
#超分辨率重建
import os
import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
# Use GFPGAN for face enhancement
face_enhancer_v3 = GFPGANer(
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
os.makedirs('output', exist_ok=True)
def inference(img):
scale = 2
try:
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
face_enhancer = face_enhancer_v3
try:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
except RuntimeError as error:
print('Error', error)
else:
extension = 'png'
try:
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
except Exception as error:
print('wrong scale input.', error)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output
except Exception as error:
print('global exception', error)
return None
demo = gr.Interface(
inference,
gr.inputs.Image(type="filepath"),
gr.Image(),
title = "图像超分辨率重建",
allow_flagging="never",
examples = ['1.jpg', '2.jpg', '4.jpg'])
if __name__ == '__main__':
demo.queue().launch(server_name = "0.0.0.0", server_port = 7004, max_threads=40, show_error=True)

9
gfp-gan/requirements.txt Normal file
View File

@ -0,0 +1,9 @@
gradio
torch
basicsr
gfpgan
realesrgan
opencv-python-headless==4.5.3.56
pillow
numpy