diff --git a/gfp-gan/1.jpg b/gfp-gan/1.jpg new file mode 100644 index 0000000..95c58cb Binary files /dev/null and b/gfp-gan/1.jpg differ diff --git a/gfp-gan/2.jpg b/gfp-gan/2.jpg new file mode 100644 index 0000000..bc986be Binary files /dev/null and b/gfp-gan/2.jpg differ diff --git a/gfp-gan/4.jpg b/gfp-gan/4.jpg new file mode 100644 index 0000000..7c47c79 Binary files /dev/null and b/gfp-gan/4.jpg differ diff --git a/gfp-gan/Dockerfile b/gfp-gan/Dockerfile new file mode 100644 index 0000000..156beff --- /dev/null +++ b/gfp-gan/Dockerfile @@ -0,0 +1,19 @@ +FROM python:3.8.4-slim + +WORKDIR /app + +COPY requirements.txt /app + +RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/ + +RUN apt-get update && \ + apt-get upgrade -y && \ + apt-get install -y git + +RUN apt-get install -y tk + +RUN pip3 install --trusted-host pypi.python.org -r requirements.txt + +COPY . /app + +CMD ["python", "gfp_gan.py"] diff --git a/gfp-gan/gfp_gan.py b/gfp-gan/gfp_gan.py new file mode 100644 index 0000000..ba3fd82 --- /dev/null +++ b/gfp-gan/gfp_gan.py @@ -0,0 +1,77 @@ +#超分辨率重建 +import os +import cv2 +import gradio as gr +import torch +from basicsr.archs.srvgg_arch import SRVGGNetCompact +from gfpgan.utils import GFPGANer +from realesrgan.utils import RealESRGANer + + +# background enhancer with RealESRGAN +model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') +model_path = 'realesr-general-x4v3.pth' +half = True if torch.cuda.is_available() else False +upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) + +# Use GFPGAN for face enhancement +face_enhancer_v3 = GFPGANer( + model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) + +os.makedirs('output', exist_ok=True) + + +def inference(img): + scale = 2 + try: + img = cv2.imread(img, cv2.IMREAD_UNCHANGED) + if len(img.shape) == 3 and img.shape[2] == 4: + img_mode = 'RGBA' + else: + img_mode = None + + h, w = img.shape[0:2] + if h < 300: + img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) + + face_enhancer = face_enhancer_v3 + + try: + _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) + except RuntimeError as error: + print('Error', error) + else: + extension = 'png' + + try: + if scale != 2: + interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 + h, w = img.shape[0:2] + output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) + except Exception as error: + print('wrong scale input.', error) + if img_mode == 'RGBA': # RGBA images should be saved in png format + extension = 'png' + else: + extension = 'jpg' + save_path = f'output/out.{extension}' + cv2.imwrite(save_path, output) + + output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) + return output + except Exception as error: + print('global exception', error) + return None + + +demo = gr.Interface( + inference, + gr.inputs.Image(type="filepath"), + gr.Image(), + title = "图像超分辨率重建", + allow_flagging="never", + examples = ['1.jpg', '2.jpg', '4.jpg']) + + +if __name__ == '__main__': + demo.queue().launch(server_name = "0.0.0.0", server_port = 7004, max_threads=40, show_error=True) diff --git a/gfp-gan/requirements.txt b/gfp-gan/requirements.txt new file mode 100644 index 0000000..a7bf2fb --- /dev/null +++ b/gfp-gan/requirements.txt @@ -0,0 +1,9 @@ +gradio +torch +basicsr +gfpgan +realesrgan +opencv-python-headless==4.5.3.56 +pillow +numpy +