add gfp-gan
This commit is contained in:
parent
b06fcd781c
commit
20537b20fa
Binary file not shown.
After ![]() (image error) Size: 44 KiB |
Binary file not shown.
After ![]() (image error) Size: 91 KiB |
Binary file not shown.
After ![]() (image error) Size: 298 KiB |
|
@ -0,0 +1,19 @@
|
|||
FROM python:3.8.4-slim
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY requirements.txt /app
|
||||
|
||||
RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get upgrade -y && \
|
||||
apt-get install -y git
|
||||
|
||||
RUN apt-get install -y tk
|
||||
|
||||
RUN pip3 install --trusted-host pypi.python.org -r requirements.txt
|
||||
|
||||
COPY . /app
|
||||
|
||||
CMD ["python", "gfp_gan.py"]
|
|
@ -0,0 +1,77 @@
|
|||
#超分辨率重建
|
||||
import os
|
||||
import cv2
|
||||
import gradio as gr
|
||||
import torch
|
||||
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
||||
from gfpgan.utils import GFPGANer
|
||||
from realesrgan.utils import RealESRGANer
|
||||
|
||||
|
||||
# background enhancer with RealESRGAN
|
||||
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
||||
model_path = 'realesr-general-x4v3.pth'
|
||||
half = True if torch.cuda.is_available() else False
|
||||
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
||||
|
||||
# Use GFPGAN for face enhancement
|
||||
face_enhancer_v3 = GFPGANer(
|
||||
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
||||
|
||||
os.makedirs('output', exist_ok=True)
|
||||
|
||||
|
||||
def inference(img):
|
||||
scale = 2
|
||||
try:
|
||||
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
||||
if len(img.shape) == 3 and img.shape[2] == 4:
|
||||
img_mode = 'RGBA'
|
||||
else:
|
||||
img_mode = None
|
||||
|
||||
h, w = img.shape[0:2]
|
||||
if h < 300:
|
||||
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
||||
|
||||
face_enhancer = face_enhancer_v3
|
||||
|
||||
try:
|
||||
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
except RuntimeError as error:
|
||||
print('Error', error)
|
||||
else:
|
||||
extension = 'png'
|
||||
|
||||
try:
|
||||
if scale != 2:
|
||||
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
||||
h, w = img.shape[0:2]
|
||||
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
||||
except Exception as error:
|
||||
print('wrong scale input.', error)
|
||||
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
||||
extension = 'png'
|
||||
else:
|
||||
extension = 'jpg'
|
||||
save_path = f'output/out.{extension}'
|
||||
cv2.imwrite(save_path, output)
|
||||
|
||||
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
||||
return output
|
||||
except Exception as error:
|
||||
print('global exception', error)
|
||||
return None
|
||||
|
||||
|
||||
demo = gr.Interface(
|
||||
inference,
|
||||
gr.inputs.Image(type="filepath"),
|
||||
gr.Image(),
|
||||
title = "图像超分辨率重建",
|
||||
allow_flagging="never",
|
||||
examples = ['1.jpg', '2.jpg', '4.jpg'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
demo.queue().launch(server_name = "0.0.0.0", server_port = 7004, max_threads=40, show_error=True)
|
|
@ -0,0 +1,9 @@
|
|||
gradio
|
||||
torch
|
||||
basicsr
|
||||
gfpgan
|
||||
realesrgan
|
||||
opencv-python-headless==4.5.3.56
|
||||
pillow
|
||||
numpy
|
||||
|
Loading…
Reference in New Issue