tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa is a forked repo from huggingface. License: cc-by-sa-4-0
Go to file
Tien Nguyen Van 9977165524 update model card README.md 2021-10-31 16:33:32 +00:00
runs Fine tuning BERT base for DocVQA 2021-10-31 16:23:25 +00:00
.gitattributes initial commit 2021-10-30 12:18:39 +00:00
.gitignore Training in progress, step 5000 2021-10-31 15:39:19 +00:00
README.md update model card README.md 2021-10-31 16:33:32 +00:00
config.json Training in progress, step 5000 2021-10-31 15:39:19 +00:00
preprocessor_config.json Training in progress, step 5000 2021-10-31 15:39:19 +00:00
pytorch_model.bin Fine tuning BERT base for DocVQA 2021-10-31 16:23:25 +00:00
special_tokens_map.json Training in progress, step 5000 2021-10-31 15:39:19 +00:00
tokenizer.json Training in progress, step 5000 2021-10-31 15:39:19 +00:00
tokenizer_config.json Training in progress, step 5000 2021-10-31 15:39:19 +00:00
training_args.bin Training in progress, step 5000 2021-10-31 15:39:19 +00:00
vocab.txt Training in progress, step 5000 2021-10-31 15:39:19 +00:00

README.md

license tags model-index
cc-by-sa-4.0
generated_from_trainer
name results
layoutlmv2-base-uncased-finetuned-docvqa

layoutlmv2-base-uncased-finetuned-docvqa

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1940

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 250500
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.463 0.27 1000 1.6272
0.9447 0.53 2000 1.3646
0.7725 0.8 3000 1.2560
0.5762 1.06 4000 1.3582
0.4382 1.33 5000 1.2490
0.4515 1.59 6000 1.1860
0.383 1.86 7000 1.1940

Framework versions

  • Transformers 4.12.2
  • Pytorch 1.8.0+cu101
  • Datasets 1.14.0
  • Tokenizers 0.10.3