update model card README.md
This commit is contained in:
parent
677ce4a518
commit
9977165524
|
@ -0,0 +1,62 @@
|
|||
---
|
||||
license: cc-by-sa-4.0
|
||||
tags:
|
||||
- generated_from_trainer
|
||||
model-index:
|
||||
- name: layoutlmv2-base-uncased-finetuned-docvqa
|
||||
results: []
|
||||
---
|
||||
|
||||
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
||||
should probably proofread and complete it, then remove this comment. -->
|
||||
|
||||
# layoutlmv2-base-uncased-finetuned-docvqa
|
||||
|
||||
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
|
||||
It achieves the following results on the evaluation set:
|
||||
- Loss: 1.1940
|
||||
|
||||
## Model description
|
||||
|
||||
More information needed
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
More information needed
|
||||
|
||||
## Training and evaluation data
|
||||
|
||||
More information needed
|
||||
|
||||
## Training procedure
|
||||
|
||||
### Training hyperparameters
|
||||
|
||||
The following hyperparameters were used during training:
|
||||
- learning_rate: 5e-05
|
||||
- train_batch_size: 8
|
||||
- eval_batch_size: 8
|
||||
- seed: 250500
|
||||
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
||||
- lr_scheduler_type: linear
|
||||
- num_epochs: 2
|
||||
|
||||
### Training results
|
||||
|
||||
| Training Loss | Epoch | Step | Validation Loss |
|
||||
|:-------------:|:-----:|:----:|:---------------:|
|
||||
| 1.463 | 0.27 | 1000 | 1.6272 |
|
||||
| 0.9447 | 0.53 | 2000 | 1.3646 |
|
||||
| 0.7725 | 0.8 | 3000 | 1.2560 |
|
||||
| 0.5762 | 1.06 | 4000 | 1.3582 |
|
||||
| 0.4382 | 1.33 | 5000 | 1.2490 |
|
||||
| 0.4515 | 1.59 | 6000 | 1.1860 |
|
||||
| 0.383 | 1.86 | 7000 | 1.1940 |
|
||||
|
||||
|
||||
### Framework versions
|
||||
|
||||
- Transformers 4.12.2
|
||||
- Pytorch 1.8.0+cu101
|
||||
- Datasets 1.14.0
|
||||
- Tokenizers 0.10.3
|
Loading…
Reference in New Issue