Create README.md
This commit is contained in:
parent
53da5f47ea
commit
d6fb8b9010
|
@ -0,0 +1,74 @@
|
||||||
|
---
|
||||||
|
pipeline_tag: sentence-similarity
|
||||||
|
license: apache-2.0
|
||||||
|
tags:
|
||||||
|
- text2vec
|
||||||
|
- feature-extraction
|
||||||
|
- sentence-similarity
|
||||||
|
- transformers
|
||||||
|
---
|
||||||
|
# shibing624/text2vec
|
||||||
|
This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
||||||
|
## Usage (text2vec)
|
||||||
|
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
||||||
|
```
|
||||||
|
pip install -U text2vec
|
||||||
|
```
|
||||||
|
Then you can use the model like this:
|
||||||
|
```python
|
||||||
|
from text2vec import SBert
|
||||||
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
||||||
|
|
||||||
|
model = SBert('shibing624/text2vec-base-chinese')
|
||||||
|
embeddings = model.encode(sentences)
|
||||||
|
print(embeddings)
|
||||||
|
```
|
||||||
|
## Usage (HuggingFace Transformers)
|
||||||
|
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
||||||
|
```python
|
||||||
|
from transformers import BertTokenizer, BertModel
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# Mean Pooling - Take attention mask into account for correct averaging
|
||||||
|
def mean_pooling(model_output, attention_mask):
|
||||||
|
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
||||||
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||||||
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||||||
|
|
||||||
|
# Load model from HuggingFace Hub
|
||||||
|
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
|
||||||
|
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese')
|
||||||
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
||||||
|
# Tokenize sentences
|
||||||
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
||||||
|
|
||||||
|
# Compute token embeddings
|
||||||
|
with torch.no_grad():
|
||||||
|
model_output = model(**encoded_input)
|
||||||
|
# Perform pooling. In this case, max pooling.
|
||||||
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||||
|
print("Sentence embeddings:")
|
||||||
|
print(sentence_embeddings)
|
||||||
|
```
|
||||||
|
## Evaluation Results
|
||||||
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
||||||
|
|
||||||
|
## Full Model Architecture
|
||||||
|
```
|
||||||
|
SBert(
|
||||||
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
||||||
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
|
||||||
|
)
|
||||||
|
```
|
||||||
|
## Citing & Authors
|
||||||
|
This model was trained by [text2vec/cosent](https://github.com/shibing624/text2vec/cosent).
|
||||||
|
|
||||||
|
If you find this model helpful, feel free to cite:
|
||||||
|
```bibtex
|
||||||
|
@software{text2vec,
|
||||||
|
author = {Xu Ming},
|
||||||
|
title = {text2vec: A Tool for Text to Vector},
|
||||||
|
year = {2022},
|
||||||
|
url = {https://github.com/shibing624/text2vec},
|
||||||
|
}
|
||||||
|
```
|
Loading…
Reference in New Issue