diff --git a/README.md b/README.md new file mode 100644 index 0000000..f6c9f2d --- /dev/null +++ b/README.md @@ -0,0 +1,74 @@ +--- +pipeline_tag: sentence-similarity +license: apache-2.0 +tags: +- text2vec +- feature-extraction +- sentence-similarity +- transformers +--- +# shibing624/text2vec +This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. +## Usage (text2vec) +Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed: +``` +pip install -U text2vec +``` +Then you can use the model like this: +```python +from text2vec import SBert +sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] + +model = SBert('shibing624/text2vec-base-chinese') +embeddings = model.encode(sentences) +print(embeddings) +``` +## Usage (HuggingFace Transformers) +Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. +```python +from transformers import BertTokenizer, BertModel +import torch + +# Mean Pooling - Take attention mask into account for correct averaging +def mean_pooling(model_output, attention_mask): + token_embeddings = model_output[0] # First element of model_output contains all token embeddings + input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() + return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) + +# Load model from HuggingFace Hub +tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese') +model = BertModel.from_pretrained('shibing624/text2vec-base-chinese') +sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] +# Tokenize sentences +encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') + +# Compute token embeddings +with torch.no_grad(): + model_output = model(**encoded_input) +# Perform pooling. In this case, max pooling. +sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) +print("Sentence embeddings:") +print(sentence_embeddings) +``` +## Evaluation Results +For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec) + +## Full Model Architecture +``` +SBert( + (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel + (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True}) +) +``` +## Citing & Authors +This model was trained by [text2vec/cosent](https://github.com/shibing624/text2vec/cosent). + +If you find this model helpful, feel free to cite: +```bibtex +@software{text2vec, + author = {Xu Ming}, + title = {text2vec: A Tool for Text to Vector}, + year = {2022}, + url = {https://github.com/shibing624/text2vec}, +} +```