3.7 KiB
3.7 KiB
language: en tags:
- sagemaker
- bart
- summarization datasets:
- samsum widget:
- text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n
Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:
\ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?
\ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face\n" model-index: - name: bart-large-cnn-samsum
results:
- task:
name: Abstractive Text Summarization
type: abstractive-text-summarization
dataset:
name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization'
type: samsum
metrics:
- name: Validation ROGUE-1 type: rogue-1 value: 42.621
- name: Validation ROGUE-2 type: rogue-2 value: 21.9825
- name: Validation ROGUE-L type: rogue-l value: 33.034
- name: Test ROGUE-1 type: rogue-1 value: 41.3174
- name: Test ROGUE-2 type: rogue-2 value: 20.8716
- name: Test ROGUE-L type: rogue-l value: 32.1337
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- name: ROUGE-1 type: rouge value: 41.3282 verified: true
- name: ROUGE-2 type: rouge value: 20.8755 verified: true
- name: ROUGE-L type: rouge value: 32.1353 verified: true
- name: ROUGE-LSUM type: rouge value: 38.401 verified: true
- name: loss type: loss value: 1.4297215938568115 verified: true
- name: gen_len type: gen_len value: 60.0757 verified: true
- task:
name: Abstractive Text Summarization
type: abstractive-text-summarization
dataset:
name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization'
type: samsum
metrics:
bart-large-cnn-samsum
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
For more information look at:
- 🤗 Transformers Documentation: Amazon SageMaker
- Example Notebooks
- Amazon SageMaker documentation for Hugging Face
- Python SDK SageMaker documentation for Hugging Face
- Deep Learning Container
Hyperparameters
{
"dataset_name": "samsum",
"do_eval": true,
"do_predict": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "facebook/bart-large-cnn",
"num_train_epochs": 3,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"predict_with_generate": true,
"seed": 7
}
Usage
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
'''
nlp(conversation)
Results
key | value |
---|---|
eval_rouge1 | 42.621 |
eval_rouge2 | 21.9825 |
eval_rougeL | 33.034 |
eval_rougeLsum | 39.6783 |
test_rouge1 | 41.3174 |
test_rouge2 | 20.8716 |
test_rougeL | 32.1337 |
test_rougeLsum | 38.4149 |