177 lines
6.9 KiB
Markdown
177 lines
6.9 KiB
Markdown
---
|
||
language: en
|
||
datasets:
|
||
- common_voice
|
||
metrics:
|
||
- wer
|
||
- cer
|
||
tags:
|
||
- audio
|
||
- automatic-speech-recognition
|
||
- speech
|
||
- xlsr-fine-tuning-week
|
||
license: apache-2.0
|
||
model-index:
|
||
- name: XLSR Wav2Vec2 English by Jonatas Grosman
|
||
results:
|
||
- task:
|
||
name: Speech Recognition
|
||
type: automatic-speech-recognition
|
||
dataset:
|
||
name: Common Voice en
|
||
type: common_voice
|
||
args: en
|
||
metrics:
|
||
- name: Test WER
|
||
type: wer
|
||
value: 18.98
|
||
- name: Test CER
|
||
type: cer
|
||
value: 8.29
|
||
---
|
||
|
||
# Wav2Vec2-Large-XLSR-53-English
|
||
|
||
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
||
When using this model, make sure that your speech input is sampled at 16kHz.
|
||
|
||
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
|
||
|
||
## Usage
|
||
|
||
The model can be used directly (without a language model) as follows:
|
||
|
||
```python
|
||
import torch
|
||
import librosa
|
||
from datasets import load_dataset
|
||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||
|
||
LANG_ID = "en"
|
||
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
||
SAMPLES = 10
|
||
|
||
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
||
|
||
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
||
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
||
|
||
# Preprocessing the datasets.
|
||
# We need to read the audio files as arrays
|
||
def speech_file_to_array_fn(batch):
|
||
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
||
batch["speech"] = speech_array
|
||
batch["sentence"] = batch["sentence"].upper()
|
||
return batch
|
||
|
||
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
||
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
||
|
||
with torch.no_grad():
|
||
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
||
|
||
predicted_ids = torch.argmax(logits, dim=-1)
|
||
predicted_sentences = processor.batch_decode(predicted_ids)
|
||
|
||
for i, predicted_sentence in enumerate(predicted_sentences):
|
||
print("-" * 100)
|
||
print("Reference:", test_dataset[i]["sentence"])
|
||
print("Prediction:", predicted_sentence)
|
||
```
|
||
|
||
| Reference | Prediction |
|
||
| ------------- | ------------- |
|
||
| "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT |
|
||
| SIX | SIX |
|
||
| "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL |
|
||
| DO YOU MEAN IT? | DO YOU MEAN IT |
|
||
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
|
||
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q |
|
||
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY |
|
||
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
|
||
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER |
|
||
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
|
||
|
||
## Evaluation
|
||
|
||
The model can be evaluated as follows on the English test data of Common Voice.
|
||
|
||
```python
|
||
import torch
|
||
import re
|
||
import librosa
|
||
from datasets import load_dataset, load_metric
|
||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||
|
||
LANG_ID = "en"
|
||
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
||
DEVICE = "cuda"
|
||
|
||
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "<22>", "ʿ", "·", "჻", "~", "՞",
|
||
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
||
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
||
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
||
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
||
|
||
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
||
|
||
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
|
||
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
|
||
|
||
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
||
|
||
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
||
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
||
model.to(DEVICE)
|
||
|
||
# Preprocessing the datasets.
|
||
# We need to read the audio files as arrays
|
||
def speech_file_to_array_fn(batch):
|
||
with warnings.catch_warnings():
|
||
warnings.simplefilter("ignore")
|
||
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
||
batch["speech"] = speech_array
|
||
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
|
||
return batch
|
||
|
||
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
||
|
||
# Preprocessing the datasets.
|
||
# We need to read the audio files as arrays
|
||
def evaluate(batch):
|
||
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
||
|
||
with torch.no_grad():
|
||
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
||
|
||
pred_ids = torch.argmax(logits, dim=-1)
|
||
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
||
return batch
|
||
|
||
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
||
|
||
predictions = [x.upper() for x in result["pred_strings"]]
|
||
references = [x.upper() for x in result["sentence"]]
|
||
|
||
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
||
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
||
```
|
||
|
||
**Test Result**:
|
||
|
||
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-06-17). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
|
||
|
||
| Model | WER | CER |
|
||
| ------------- | ------------- | ------------- |
|
||
| jonatasgrosman/wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** |
|
||
| jonatasgrosman/wav2vec2-large-english | 21.53% | 9.66% |
|
||
| facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% |
|
||
| facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% |
|
||
| boris/xlsr-en-punctuation | 29.10% | 10.75% |
|
||
| facebook/wav2vec2-large-960h | 32.79% | 16.03% |
|
||
| facebook/wav2vec2-base-960h | 39.86% | 19.89% |
|
||
| facebook/wav2vec2-base-100h | 51.06% | 25.06% |
|
||
| elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% |
|
||
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% |
|
||
| elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% |
|