52 lines
1.5 KiB
Python
52 lines
1.5 KiB
Python
|
import torch
|
||
|
import requests
|
||
|
from PIL import Image
|
||
|
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
||
|
import gradio as gr
|
||
|
from gradio.themes.utils import sizes
|
||
|
|
||
|
|
||
|
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
|
||
|
block_label_text_color = '#4D63FF',
|
||
|
block_title_text_color = '#4D63FF',
|
||
|
button_primary_text_color = '#4D63FF',
|
||
|
button_primary_background_fill='#FFFFFF',
|
||
|
button_primary_border_color='#4D63FF',
|
||
|
button_primary_background_fill_hover='#EDEFFF',
|
||
|
)
|
||
|
|
||
|
|
||
|
loc = "ydshieh/vit-gpt2-coco-en"
|
||
|
|
||
|
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
||
|
tokenizer = AutoTokenizer.from_pretrained(loc)
|
||
|
model = VisionEncoderDecoderModel.from_pretrained(loc)
|
||
|
model.eval()
|
||
|
|
||
|
|
||
|
def predict(image):
|
||
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
||
|
|
||
|
with torch.no_grad():
|
||
|
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
||
|
|
||
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
||
|
|
||
|
total_caption = ""
|
||
|
for pred in preds:
|
||
|
total_caption = total_caption + pred.strip()
|
||
|
total_caption = total_caption + "\r\n"
|
||
|
|
||
|
return total_caption
|
||
|
|
||
|
demo = gr.Interface(fn=predict,
|
||
|
inputs='image',
|
||
|
outputs='text',
|
||
|
title = "image2text",
|
||
|
theme = theme,
|
||
|
examples = ['soccer.jpg'])
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
demo.queue(concurrency_count=1).launch(server_name = "0.0.0.0")
|