import torch import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel import gradio as gr from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = VisionEncoderDecoderModel.from_pretrained(loc) model.eval() def predict(image): pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values with torch.no_grad(): output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) total_caption = "" for pred in preds: total_caption = total_caption + pred.strip() total_caption = total_caption + "\r\n" return total_caption demo = gr.Interface(fn=predict, inputs='image', outputs='text', title = "image2text", theme = theme, examples = ['soccer.jpg']) if __name__ == "__main__": demo.queue(concurrency_count=1).launch(server_name = "0.0.0.0")