sentiment_analysis_generic_.../app.py

42 lines
1.3 KiB
Python

import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification
from gradio.themes.utils import sizes
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
block_label_text_color = '#4D63FF',
block_title_text_color = '#4D63FF',
button_primary_text_color = '#4D63FF',
button_primary_background_fill='#FFFFFF',
button_primary_border_color='#4D63FF',
button_primary_background_fill_hover='#EDEFFF',
)
modelName="Seethal/sentiment_analysis_generic_dataset"
tokenizer = AutoTokenizer.from_pretrained(modelName)
model = AutoModelForSequenceClassification.from_pretrained(modelName)
sentimentPipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
Label2Des = {
"LABEL_0": "NEGATIVE",
"LABEL_1": "NEUTRAL",
"LABEL_2": "POSITIVE"
}
def sentiment_analysis(text):
results = sentimentPipeline(text)
return f"Sentiment: {Label2Des.get(results[0]['label'])}, Score: {results[0]['score']:.2f}"
demo = gr.Interface(fn=sentiment_analysis,
inputs='text',
outputs='text',
theme = theme,
css = "footer {visibility: hidden}",
allow_flagging = "never"
)
if __name__ == "__main__":
demo.queue(concurrency_count=10)
demo.launch(server_name = "0.0.0.0")