import gradio as gr from transformers import pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) modelName="Seethal/sentiment_analysis_generic_dataset" tokenizer = AutoTokenizer.from_pretrained(modelName) model = AutoModelForSequenceClassification.from_pretrained(modelName) sentimentPipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) Label2Des = { "LABEL_0": "NEGATIVE", "LABEL_1": "NEUTRAL", "LABEL_2": "POSITIVE" } def sentiment_analysis(text): results = sentimentPipeline(text) return f"Sentiment: {Label2Des.get(results[0]['label'])}, Score: {results[0]['score']:.2f}" demo = gr.Interface(fn=sentiment_analysis, inputs='text', outputs='text', theme = theme, css = "footer {visibility: hidden}", allow_flagging = "never" ) if __name__ == "__main__": demo.queue(concurrency_count=10) demo.launch(server_name = "0.0.0.0")