sd-vae-ft-mse/app.py

37 lines
1.1 KiB
Python

from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionPipeline
import gradio as gr
from gradio.themes.utils import sizes
theme = gr.themes.Default(radius_size=sizes.radius_none).set(
block_label_text_color = '#4D63FF',
block_title_text_color = '#4D63FF',
button_primary_text_color = '#4D63FF',
button_primary_background_fill='#FFFFFF',
button_primary_border_color='#4D63FF',
button_primary_background_fill_hover='#EDEFFF',
)
model = "CompVis/stable-diffusion-v1-4"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae)
def text2image(prompt):
image = pipe(prompt).images[0]
return image
demo = gr.Interface(fn=text2image,
inputs='text',
outputs='image',
theme = theme,
css = "footer {visibility: hidden}",
allow_flagging = "never",
examples = ['a photo of an astronaut riding a horse on mars'])
if __name__ == "__main__":
demo.queue(concurrency_count=10).launch(server_name = "0.0.0.0")