from diffusers.models import AutoencoderKL from diffusers import StableDiffusionPipeline import gradio as gr from gradio.themes.utils import sizes theme = gr.themes.Default(radius_size=sizes.radius_none).set( block_label_text_color = '#4D63FF', block_title_text_color = '#4D63FF', button_primary_text_color = '#4D63FF', button_primary_background_fill='#FFFFFF', button_primary_border_color='#4D63FF', button_primary_background_fill_hover='#EDEFFF', ) model = "CompVis/stable-diffusion-v1-4" vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae) def text2image(prompt): image = pipe(prompt).images[0] return image demo = gr.Interface(fn=text2image, inputs='text', outputs='image', theme = theme, css = "footer {visibility: hidden}", allow_flagging = "never", examples = ['a photo of an astronaut riding a horse on mars']) if __name__ == "__main__": demo.queue(concurrency_count=10).launch(server_name = "0.0.0.0")