Compare commits

...

10 Commits

Author SHA1 Message Date
Anton Lozhkov 54074b1c16 Update results 2022-05-23 16:13:42 +00:00
Patrick von Platen 205e8c37b1 Update README.md 2022-04-12 09:28:22 +00:00
Patrick von Platen 2409eda322 Update README.md 2022-04-05 16:40:00 +00:00
Patrick von Platen d72d8ffa1e Update README.md 2022-03-31 19:51:10 +00:00
Patrick von Platen 63fb1ed2d0 Update README.md 2022-03-24 22:55:52 +00:00
Patrick von Platen d2198fc3e2 Update README.md 2022-03-24 22:47:59 +00:00
Patrick von Platen 6f0b7949d1 Update README.md 2021-08-27 15:37:00 +00:00
Patrick von Platen 87f7f02dc3 upload flax model 2021-07-06 01:59:38 +00:00
Patrick von Platen 46eeec5285 allow flax 2021-07-06 01:59:00 +00:00
Patrick von Platen 6bb7161231 add model 2021-06-13 20:53:32 +01:00
5 changed files with 75 additions and 29 deletions

1
.gitattributes vendored
View File

@ -14,3 +14,4 @@
*.pb filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text

View File

@ -6,7 +6,39 @@ tags:
- speech
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
license: apache-2.0
model-index:
- name: wav2vec2-large-960h-lv60
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 1.9
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 3.9
---
# Wav2Vec2-Large-960h-Lv60 + Self-Training
@ -31,34 +63,26 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load model and tokenizer
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
# load model and processor
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
# define function to read in sound file
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.map(map_to_array)
# tokenize
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
@ -67,8 +91,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
```python
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import soundfile as sf
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
@ -76,17 +99,10 @@ from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
def map_to_pred(batch):
inputs = tokenizer(batch["speech"], return_tensors="pt", padding="longest")
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
input_values = inputs.input_values.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
@ -94,11 +110,11 @@ def map_to_pred(batch):
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"])
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```

View File

@ -1,7 +1,14 @@
{
"_name_or_path": "facebook/wav2vec2-large-960h-lv60-self",
"activation_dropout": 0.1,
"apply_spec_augment": true,
"architectures": [
"Wav2Vec2ForCTC"
],
"attention_dropout": 0.1,
"bos_token_id": 1,
"codevector_dim": 256,
"contrastive_logits_temperature": 0.1,
"conv_bias": true,
"conv_dim": [
512,
@ -30,22 +37,41 @@
2,
2
],
"ctc_loss_reduction": "sum",
"ctc_zero_infinity": false,
"diversity_loss_weight": 0.1,
"do_stable_layer_norm": true,
"eos_token_id": 2,
"feat_extract_activation": "gelu",
"feat_extract_dropout": 0.0,
"feat_extract_norm": "layer",
"feat_proj_dropout": 0.1,
"feat_quantizer_dropout": 0.0,
"final_dropout": 0.1,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout": 0.1,
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-05,
"layerdrop": 0.1,
"mask_feature_length": 10,
"mask_feature_prob": 0.0,
"mask_time_length": 10,
"mask_time_prob": 0.05,
"model_type": "wav2vec2",
"num_attention_heads": 16,
"num_codevector_groups": 2,
"num_codevectors_per_group": 320,
"num_conv_pos_embedding_groups": 16,
"num_conv_pos_embeddings": 128,
"num_feat_extract_layers": 7,
"num_hidden_layers": 24,
"transformers_version": "4.3.0.dev0",
"num_negatives": 100,
"pad_token_id": 0,
"proj_codevector_dim": 256,
"transformers_version": "4.7.0.dev0",
"vocab_size": 32
}

BIN
flax_model.msgpack (Stored with Git LFS) Normal file

Binary file not shown.

BIN
tf_model.h5 (Stored with Git LFS)

Binary file not shown.