Update README.md
This commit is contained in:
parent
87f7f02dc3
commit
6f0b7949d1
18
README.md
18
README.md
|
@ -31,13 +31,13 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
|
|||
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
||||
|
||||
```python
|
||||
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
|
||||
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
||||
from datasets import load_dataset
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
# load model and tokenizer
|
||||
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
||||
# load model and processor
|
||||
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
||||
|
||||
# define function to read in sound file
|
||||
|
@ -51,14 +51,14 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|||
ds = ds.map(map_to_array)
|
||||
|
||||
# tokenize
|
||||
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
||||
input_values = processor(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
||||
|
||||
# retrieve logits
|
||||
logits = model(input_values).logits
|
||||
|
||||
# take argmax and decode
|
||||
predicted_ids = torch.argmax(logits, dim=-1)
|
||||
transcription = tokenizer.batch_decode(predicted_ids)
|
||||
transcription = processor.batch_decode(predicted_ids)
|
||||
```
|
||||
|
||||
## Evaluation
|
||||
|
@ -67,7 +67,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||
import soundfile as sf
|
||||
import torch
|
||||
from jiwer import wer
|
||||
|
@ -76,7 +76,7 @@ from jiwer import wer
|
|||
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
||||
|
||||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
|
||||
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
||||
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
||||
|
||||
def map_to_array(batch):
|
||||
speech, _ = sf.read(batch["file"])
|
||||
|
@ -86,7 +86,7 @@ def map_to_array(batch):
|
|||
librispeech_eval = librispeech_eval.map(map_to_array)
|
||||
|
||||
def map_to_pred(batch):
|
||||
inputs = tokenizer(batch["speech"], return_tensors="pt", padding="longest")
|
||||
inputs = processor(batch["speech"], return_tensors="pt", padding="longest")
|
||||
input_values = inputs.input_values.to("cuda")
|
||||
attention_mask = inputs.attention_mask.to("cuda")
|
||||
|
||||
|
@ -94,7 +94,7 @@ def map_to_pred(batch):
|
|||
logits = model(input_values, attention_mask=attention_mask).logits
|
||||
|
||||
predicted_ids = torch.argmax(logits, dim=-1)
|
||||
transcription = tokenizer.batch_decode(predicted_ids)
|
||||
transcription = processor.batch_decode(predicted_ids)
|
||||
batch["transcription"] = transcription
|
||||
return batch
|
||||
|
||||
|
|
Loading…
Reference in New Issue