fix a typo in code snippet (#2)
- fix a typo in code snippet (3753aeee87a9b3b11c8e4fcff74f0c824a4cafed) - Update README.md (048d3c90f3f8c5343255801578a89ee6e1caad71) Co-authored-by: Fatih <fcakyon@users.noreply.huggingface.co>
This commit is contained in:
parent
113f762324
commit
eed8700e24
|
@ -20,16 +20,16 @@ You can use the raw model for video classification into one of the 174 possible
|
|||
Here is how to use this model to classify a video:
|
||||
|
||||
```python
|
||||
from transformers import TimesformerFeatureExtractor, TimesformerForVideoClassification
|
||||
from transformers import AutoImageProcessor, TimesformerForVideoClassification
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
video = list(np.random.randn(16, 3, 448, 448))
|
||||
|
||||
feature_extractor = TimesformerFeatureExtractor.from_pretrained("facebook/timesformer-hr-finetuned-ssv2")
|
||||
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-ssv22")
|
||||
processor = AutoImageProcessor.from_pretrained("facebook/timesformer-hr-finetuned-ssv2")
|
||||
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-ssv2")
|
||||
|
||||
inputs = feature_extractor(video, return_tensors="pt")
|
||||
inputs = feature_extractor(images=video, return_tensors="pt")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
|
Loading…
Reference in New Issue