From eed8700e24a0c1c7149bc261aedf6543fb32aa80 Mon Sep 17 00:00:00 2001 From: Niels Rogge <nielsr@users.noreply.huggingface.co> Date: Tue, 6 Dec 2022 08:17:01 +0000 Subject: [PATCH] fix a typo in code snippet (#2) - fix a typo in code snippet (3753aeee87a9b3b11c8e4fcff74f0c824a4cafed) - Update README.md (048d3c90f3f8c5343255801578a89ee6e1caad71) Co-authored-by: Fatih <fcakyon@users.noreply.huggingface.co> --- README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 487c7a2..342ab72 100644 --- a/README.md +++ b/README.md @@ -20,16 +20,16 @@ You can use the raw model for video classification into one of the 174 possible Here is how to use this model to classify a video: ```python -from transformers import TimesformerFeatureExtractor, TimesformerForVideoClassification +from transformers import AutoImageProcessor, TimesformerForVideoClassification import numpy as np import torch video = list(np.random.randn(16, 3, 448, 448)) -feature_extractor = TimesformerFeatureExtractor.from_pretrained("facebook/timesformer-hr-finetuned-ssv2") -model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-ssv22") +processor = AutoImageProcessor.from_pretrained("facebook/timesformer-hr-finetuned-ssv2") +model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-ssv2") -inputs = feature_extractor(video, return_tensors="pt") +inputs = feature_extractor(images=video, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs)