Compare commits

...

10 Commits

Author SHA1 Message Date
Niels Rogge 060ed34a4a Improve README 2022-08-05 13:29:29 +00:00
Niels Rogge fc15262cfd Add vision tag 2022-06-27 08:30:08 +00:00
Mishig Davaadorj a98e646eb5 Update README.md 2021-11-05 16:11:14 +00:00
Mishig Davaadorj b211abe507 Update README.md 2021-11-03 16:10:03 +00:00
Mishig Davaadorj 3647619187 Update README.md 2021-11-03 16:09:17 +00:00
Mishig Davaadorj 0e8332ab58 Update README.md 2021-11-03 14:15:39 +00:00
Mishig Davaadorj 92f88c4907 Update config.json 2021-09-28 08:13:42 +00:00
Mishig Davaadorj 7c721b5c1b Update config.json 2021-09-28 07:57:29 +00:00
Niels Rogge 56e9e38851 Simplify backbone 2021-06-08 16:14:38 +02:00
Niels Rogge 7bc1fd54ac Fix typo 2021-06-01 11:55:15 +00:00
3 changed files with 407 additions and 382 deletions

View File

@ -2,11 +2,21 @@
license: apache-2.0 license: apache-2.0
tags: tags:
- image-segmentation - image-segmentation
- vision
datasets: datasets:
- coco - coco
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
example_title: Football Match
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/dog-cat.jpg
example_title: Dog & Cat
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/construction-site.jpg
example_title: Construction Site
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/apple-orange.jpg
example_title: Apple & Orange
--- ---
# DETR (End-to-End Object Detection) model with ResNet-101 backbone # DETR (End-to-End Object Detection) model with ResNet-50 backbone
DEtection TRansformer (DETR) model trained end-to-end on COCO 2017 panoptic (118k annotated images). It was introduced in the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Carion et al. and first released in [this repository](https://github.com/facebookresearch/detr). DEtection TRansformer (DETR) model trained end-to-end on COCO 2017 panoptic (118k annotated images). It was introduced in the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Carion et al. and first released in [this repository](https://github.com/facebookresearch/detr).
@ -20,6 +30,8 @@ The model is trained using a "bipartite matching loss": one compares the predict
DETR can be naturally extended to perform panoptic segmentation, by adding a mask head on top of the decoder outputs. DETR can be naturally extended to perform panoptic segmentation, by adding a mask head on top of the decoder outputs.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/detr_architecture.png)
## Intended uses & limitations ## Intended uses & limitations
You can use the raw model for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models. You can use the raw model for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models.
@ -29,22 +41,36 @@ You can use the raw model for panoptic segmentation. See the [model hub](https:/
Here is how to use this model: Here is how to use this model:
```python ```python
from transformers import DetrFeatureExtractor, DetrForSegmentation import io
from PIL import Image
import requests import requests
from PIL import Image
import torch
import numpy
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' from transformers import DetrFeatureExtractor, DetrForSegmentation
from transformers.models.detr.feature_extraction_detr import rgb_to_id
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw) image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic') feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic') model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
# prepare image for the model
inputs = feature_extractor(images=image, return_tensors="pt") inputs = feature_extractor(images=image, return_tensors="pt")
# forward pass
outputs = model(**inputs) outputs = model(**inputs)
# model predicts COCO classes, bounding boxes, and masks
logits = outputs.logits # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
bboxes = outputs.pred_boxes processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
masks = outputs.pred_masks result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
# the segmentation is stored in a special-format png
panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
# retrieve the ids corresponding to each mask
panoptic_seg_id = rgb_to_id(panoptic_seg)
``` ```
Currently, both the feature extractor and model support PyTorch. Currently, both the feature extractor and model support PyTorch.

View File

@ -27,189 +27,100 @@
"giou_cost": 2, "giou_cost": 2,
"giou_loss_coefficient": 2, "giou_loss_coefficient": 2,
"id2label": { "id2label": {
"0": "LABEL_0", "0": "N/A",
"1": "LABEL_1", "1": "person",
"2": "LABEL_2", "10": "traffic light",
"3": "LABEL_3", "100": "cardboard",
"4": "LABEL_4", "101": "carpet",
"5": "LABEL_5", "102": "ceiling-other",
"6": "LABEL_6", "103": "ceiling-tile",
"7": "LABEL_7", "104": "cloth",
"8": "LABEL_8", "105": "clothes",
"9": "LABEL_9", "106": "clouds",
"10": "LABEL_10", "107": "counter",
"11": "LABEL_11", "108": "cupboard",
"12": "LABEL_12", "109": "curtain",
"13": "LABEL_13", "11": "fire hydrant",
"14": "LABEL_14", "110": "desk-stuff",
"15": "LABEL_15", "111": "dirt",
"16": "LABEL_16", "112": "door-stuff",
"17": "LABEL_17", "113": "fence",
"18": "LABEL_18", "114": "floor-marble",
"19": "LABEL_19", "115": "floor-other",
"20": "LABEL_20", "116": "floor-stone",
"21": "LABEL_21", "117": "floor-tile",
"22": "LABEL_22", "118": "floor-wood",
"23": "LABEL_23", "119": "flower",
"24": "LABEL_24", "12": "street sign",
"25": "LABEL_25", "120": "fog",
"26": "LABEL_26", "121": "food-other",
"27": "LABEL_27", "122": "fruit",
"28": "LABEL_28", "123": "furniture-other",
"29": "LABEL_29", "124": "grass",
"30": "LABEL_30", "125": "gravel",
"31": "LABEL_31", "126": "ground-other",
"32": "LABEL_32", "127": "hill",
"33": "LABEL_33", "128": "house",
"34": "LABEL_34", "129": "leaves",
"35": "LABEL_35", "13": "stop sign",
"36": "LABEL_36", "130": "light",
"37": "LABEL_37", "131": "mat",
"38": "LABEL_38", "132": "metal",
"39": "LABEL_39", "133": "mirror-stuff",
"40": "LABEL_40", "134": "moss",
"41": "LABEL_41", "135": "mountain",
"42": "LABEL_42", "136": "mud",
"43": "LABEL_43", "137": "napkin",
"44": "LABEL_44", "138": "net",
"45": "LABEL_45", "139": "paper",
"46": "LABEL_46", "14": "parking meter",
"47": "LABEL_47", "140": "pavement",
"48": "LABEL_48", "141": "pillow",
"49": "LABEL_49", "142": "plant-other",
"50": "LABEL_50", "143": "plastic",
"51": "LABEL_51", "144": "platform",
"52": "LABEL_52", "145": "playingfield",
"53": "LABEL_53", "146": "railing",
"54": "LABEL_54", "147": "railroad",
"55": "LABEL_55", "148": "river",
"56": "LABEL_56", "149": "road",
"57": "LABEL_57", "15": "bench",
"58": "LABEL_58", "150": "rock",
"59": "LABEL_59", "151": "roof",
"60": "LABEL_60", "152": "rug",
"61": "LABEL_61", "153": "salad",
"62": "LABEL_62", "154": "sand",
"63": "LABEL_63", "155": "sea",
"64": "LABEL_64", "156": "shelf",
"65": "LABEL_65", "157": "sky-other",
"66": "LABEL_66", "158": "skyscraper",
"67": "LABEL_67", "159": "snow",
"68": "LABEL_68", "16": "bird",
"69": "LABEL_69", "160": "solid-other",
"70": "LABEL_70", "161": "stairs",
"71": "LABEL_71", "162": "stone",
"72": "LABEL_72", "163": "straw",
"73": "LABEL_73", "164": "structural-other",
"74": "LABEL_74", "165": "table",
"75": "LABEL_75", "166": "tent",
"76": "LABEL_76", "167": "textile-other",
"77": "LABEL_77", "168": "towel",
"78": "LABEL_78", "169": "tree",
"79": "LABEL_79", "17": "cat",
"80": "LABEL_80", "170": "vegetable",
"81": "LABEL_81", "171": "wall-brick",
"82": "LABEL_82", "172": "wall-concrete",
"83": "LABEL_83", "173": "wall-other",
"84": "LABEL_84", "174": "wall-panel",
"85": "LABEL_85", "175": "wall-stone",
"86": "LABEL_86", "176": "wall-tile",
"87": "LABEL_87", "177": "wall-wood",
"88": "LABEL_88", "178": "water-other",
"89": "LABEL_89", "179": "waterdrops",
"90": "LABEL_90", "18": "dog",
"91": "LABEL_91", "180": "window-blind",
"92": "LABEL_92", "181": "window-other",
"93": "LABEL_93", "182": "wood",
"94": "LABEL_94",
"95": "LABEL_95",
"96": "LABEL_96",
"97": "LABEL_97",
"98": "LABEL_98",
"99": "LABEL_99",
"100": "LABEL_100",
"101": "LABEL_101",
"102": "LABEL_102",
"103": "LABEL_103",
"104": "LABEL_104",
"105": "LABEL_105",
"106": "LABEL_106",
"107": "LABEL_107",
"108": "LABEL_108",
"109": "LABEL_109",
"110": "LABEL_110",
"111": "LABEL_111",
"112": "LABEL_112",
"113": "LABEL_113",
"114": "LABEL_114",
"115": "LABEL_115",
"116": "LABEL_116",
"117": "LABEL_117",
"118": "LABEL_118",
"119": "LABEL_119",
"120": "LABEL_120",
"121": "LABEL_121",
"122": "LABEL_122",
"123": "LABEL_123",
"124": "LABEL_124",
"125": "LABEL_125",
"126": "LABEL_126",
"127": "LABEL_127",
"128": "LABEL_128",
"129": "LABEL_129",
"130": "LABEL_130",
"131": "LABEL_131",
"132": "LABEL_132",
"133": "LABEL_133",
"134": "LABEL_134",
"135": "LABEL_135",
"136": "LABEL_136",
"137": "LABEL_137",
"138": "LABEL_138",
"139": "LABEL_139",
"140": "LABEL_140",
"141": "LABEL_141",
"142": "LABEL_142",
"143": "LABEL_143",
"144": "LABEL_144",
"145": "LABEL_145",
"146": "LABEL_146",
"147": "LABEL_147",
"148": "LABEL_148",
"149": "LABEL_149",
"150": "LABEL_150",
"151": "LABEL_151",
"152": "LABEL_152",
"153": "LABEL_153",
"154": "LABEL_154",
"155": "LABEL_155",
"156": "LABEL_156",
"157": "LABEL_157",
"158": "LABEL_158",
"159": "LABEL_159",
"160": "LABEL_160",
"161": "LABEL_161",
"162": "LABEL_162",
"163": "LABEL_163",
"164": "LABEL_164",
"165": "LABEL_165",
"166": "LABEL_166",
"167": "LABEL_167",
"168": "LABEL_168",
"169": "LABEL_169",
"170": "LABEL_170",
"171": "LABEL_171",
"172": "LABEL_172",
"173": "LABEL_173",
"174": "LABEL_174",
"175": "LABEL_175",
"176": "LABEL_176",
"177": "LABEL_177",
"178": "LABEL_178",
"179": "LABEL_179",
"180": "LABEL_180",
"181": "LABEL_181",
"182": "LABEL_182",
"183": "LABEL_183", "183": "LABEL_183",
"184": "LABEL_184", "184": "LABEL_184",
"185": "LABEL_185", "185": "LABEL_185",
@ -217,6 +128,7 @@
"187": "LABEL_187", "187": "LABEL_187",
"188": "LABEL_188", "188": "LABEL_188",
"189": "LABEL_189", "189": "LABEL_189",
"19": "horse",
"190": "LABEL_190", "190": "LABEL_190",
"191": "LABEL_191", "191": "LABEL_191",
"192": "LABEL_192", "192": "LABEL_192",
@ -227,6 +139,8 @@
"197": "LABEL_197", "197": "LABEL_197",
"198": "LABEL_198", "198": "LABEL_198",
"199": "LABEL_199", "199": "LABEL_199",
"2": "bicycle",
"20": "sheep",
"200": "LABEL_200", "200": "LABEL_200",
"201": "LABEL_201", "201": "LABEL_201",
"202": "LABEL_202", "202": "LABEL_202",
@ -237,6 +151,7 @@
"207": "LABEL_207", "207": "LABEL_207",
"208": "LABEL_208", "208": "LABEL_208",
"209": "LABEL_209", "209": "LABEL_209",
"21": "cow",
"210": "LABEL_210", "210": "LABEL_210",
"211": "LABEL_211", "211": "LABEL_211",
"212": "LABEL_212", "212": "LABEL_212",
@ -247,6 +162,7 @@
"217": "LABEL_217", "217": "LABEL_217",
"218": "LABEL_218", "218": "LABEL_218",
"219": "LABEL_219", "219": "LABEL_219",
"22": "elephant",
"220": "LABEL_220", "220": "LABEL_220",
"221": "LABEL_221", "221": "LABEL_221",
"222": "LABEL_222", "222": "LABEL_222",
@ -257,6 +173,7 @@
"227": "LABEL_227", "227": "LABEL_227",
"228": "LABEL_228", "228": "LABEL_228",
"229": "LABEL_229", "229": "LABEL_229",
"23": "bear",
"230": "LABEL_230", "230": "LABEL_230",
"231": "LABEL_231", "231": "LABEL_231",
"232": "LABEL_232", "232": "LABEL_232",
@ -267,6 +184,7 @@
"237": "LABEL_237", "237": "LABEL_237",
"238": "LABEL_238", "238": "LABEL_238",
"239": "LABEL_239", "239": "LABEL_239",
"24": "zebra",
"240": "LABEL_240", "240": "LABEL_240",
"241": "LABEL_241", "241": "LABEL_241",
"242": "LABEL_242", "242": "LABEL_242",
@ -276,106 +194,94 @@
"246": "LABEL_246", "246": "LABEL_246",
"247": "LABEL_247", "247": "LABEL_247",
"248": "LABEL_248", "248": "LABEL_248",
"249": "LABEL_249" "249": "LABEL_249",
"25": "giraffe",
"26": "hat",
"27": "backpack",
"28": "umbrella",
"29": "shoe",
"3": "car",
"30": "eye glasses",
"31": "handbag",
"32": "tie",
"33": "suitcase",
"34": "frisbee",
"35": "skis",
"36": "snowboard",
"37": "sports ball",
"38": "kite",
"39": "baseball bat",
"4": "motorcycle",
"40": "baseball glove",
"41": "skateboard",
"42": "surfboard",
"43": "tennis racket",
"44": "bottle",
"45": "plate",
"46": "wine glass",
"47": "cup",
"48": "fork",
"49": "knife",
"5": "airplane",
"50": "spoon",
"51": "bowl",
"52": "banana",
"53": "apple",
"54": "sandwich",
"55": "orange",
"56": "broccoli",
"57": "carrot",
"58": "hot dog",
"59": "pizza",
"6": "bus",
"60": "donut",
"61": "cake",
"62": "chair",
"63": "couch",
"64": "potted plant",
"65": "bed",
"66": "mirror",
"67": "dining table",
"68": "window",
"69": "desk",
"7": "train",
"70": "toilet",
"71": "door",
"72": "tv",
"73": "laptop",
"74": "mouse",
"75": "remote",
"76": "keyboard",
"77": "cell phone",
"78": "microwave",
"79": "oven",
"8": "truck",
"80": "toaster",
"81": "sink",
"82": "refrigerator",
"83": "blender",
"84": "book",
"85": "clock",
"86": "vase",
"87": "scissors",
"88": "teddy bear",
"89": "hair drier",
"9": "boat",
"90": "toothbrush",
"91": "hair brush",
"92": "banner",
"93": "blanket",
"94": "branch",
"95": "bridge",
"96": "building-other",
"97": "bush",
"98": "cabinet",
"99": "cage"
}, },
"init_std": 0.02, "init_std": 0.02,
"init_xavier_std": 1.0, "init_xavier_std": 1.0,
"is_encoder_decoder": true, "is_encoder_decoder": true,
"label2id": { "label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_10": 10,
"LABEL_100": 100,
"LABEL_101": 101,
"LABEL_102": 102,
"LABEL_103": 103,
"LABEL_104": 104,
"LABEL_105": 105,
"LABEL_106": 106,
"LABEL_107": 107,
"LABEL_108": 108,
"LABEL_109": 109,
"LABEL_11": 11,
"LABEL_110": 110,
"LABEL_111": 111,
"LABEL_112": 112,
"LABEL_113": 113,
"LABEL_114": 114,
"LABEL_115": 115,
"LABEL_116": 116,
"LABEL_117": 117,
"LABEL_118": 118,
"LABEL_119": 119,
"LABEL_12": 12,
"LABEL_120": 120,
"LABEL_121": 121,
"LABEL_122": 122,
"LABEL_123": 123,
"LABEL_124": 124,
"LABEL_125": 125,
"LABEL_126": 126,
"LABEL_127": 127,
"LABEL_128": 128,
"LABEL_129": 129,
"LABEL_13": 13,
"LABEL_130": 130,
"LABEL_131": 131,
"LABEL_132": 132,
"LABEL_133": 133,
"LABEL_134": 134,
"LABEL_135": 135,
"LABEL_136": 136,
"LABEL_137": 137,
"LABEL_138": 138,
"LABEL_139": 139,
"LABEL_14": 14,
"LABEL_140": 140,
"LABEL_141": 141,
"LABEL_142": 142,
"LABEL_143": 143,
"LABEL_144": 144,
"LABEL_145": 145,
"LABEL_146": 146,
"LABEL_147": 147,
"LABEL_148": 148,
"LABEL_149": 149,
"LABEL_15": 15,
"LABEL_150": 150,
"LABEL_151": 151,
"LABEL_152": 152,
"LABEL_153": 153,
"LABEL_154": 154,
"LABEL_155": 155,
"LABEL_156": 156,
"LABEL_157": 157,
"LABEL_158": 158,
"LABEL_159": 159,
"LABEL_16": 16,
"LABEL_160": 160,
"LABEL_161": 161,
"LABEL_162": 162,
"LABEL_163": 163,
"LABEL_164": 164,
"LABEL_165": 165,
"LABEL_166": 166,
"LABEL_167": 167,
"LABEL_168": 168,
"LABEL_169": 169,
"LABEL_17": 17,
"LABEL_170": 170,
"LABEL_171": 171,
"LABEL_172": 172,
"LABEL_173": 173,
"LABEL_174": 174,
"LABEL_175": 175,
"LABEL_176": 176,
"LABEL_177": 177,
"LABEL_178": 178,
"LABEL_179": 179,
"LABEL_18": 18,
"LABEL_180": 180,
"LABEL_181": 181,
"LABEL_182": 182,
"LABEL_183": 183, "LABEL_183": 183,
"LABEL_184": 184, "LABEL_184": 184,
"LABEL_185": 185, "LABEL_185": 185,
@ -383,7 +289,6 @@
"LABEL_187": 187, "LABEL_187": 187,
"LABEL_188": 188, "LABEL_188": 188,
"LABEL_189": 189, "LABEL_189": 189,
"LABEL_19": 19,
"LABEL_190": 190, "LABEL_190": 190,
"LABEL_191": 191, "LABEL_191": 191,
"LABEL_192": 192, "LABEL_192": 192,
@ -394,8 +299,6 @@
"LABEL_197": 197, "LABEL_197": 197,
"LABEL_198": 198, "LABEL_198": 198,
"LABEL_199": 199, "LABEL_199": 199,
"LABEL_2": 2,
"LABEL_20": 20,
"LABEL_200": 200, "LABEL_200": 200,
"LABEL_201": 201, "LABEL_201": 201,
"LABEL_202": 202, "LABEL_202": 202,
@ -406,7 +309,6 @@
"LABEL_207": 207, "LABEL_207": 207,
"LABEL_208": 208, "LABEL_208": 208,
"LABEL_209": 209, "LABEL_209": 209,
"LABEL_21": 21,
"LABEL_210": 210, "LABEL_210": 210,
"LABEL_211": 211, "LABEL_211": 211,
"LABEL_212": 212, "LABEL_212": 212,
@ -417,7 +319,6 @@
"LABEL_217": 217, "LABEL_217": 217,
"LABEL_218": 218, "LABEL_218": 218,
"LABEL_219": 219, "LABEL_219": 219,
"LABEL_22": 22,
"LABEL_220": 220, "LABEL_220": 220,
"LABEL_221": 221, "LABEL_221": 221,
"LABEL_222": 222, "LABEL_222": 222,
@ -428,7 +329,6 @@
"LABEL_227": 227, "LABEL_227": 227,
"LABEL_228": 228, "LABEL_228": 228,
"LABEL_229": 229, "LABEL_229": 229,
"LABEL_23": 23,
"LABEL_230": 230, "LABEL_230": 230,
"LABEL_231": 231, "LABEL_231": 231,
"LABEL_232": 232, "LABEL_232": 232,
@ -439,7 +339,6 @@
"LABEL_237": 237, "LABEL_237": 237,
"LABEL_238": 238, "LABEL_238": 238,
"LABEL_239": 239, "LABEL_239": 239,
"LABEL_24": 24,
"LABEL_240": 240, "LABEL_240": 240,
"LABEL_241": 241, "LABEL_241": 241,
"LABEL_242": 242, "LABEL_242": 242,
@ -450,88 +349,189 @@
"LABEL_247": 247, "LABEL_247": 247,
"LABEL_248": 248, "LABEL_248": 248,
"LABEL_249": 249, "LABEL_249": 249,
"LABEL_25": 25, "N/A": 0,
"LABEL_26": 26, "airplane": 5,
"LABEL_27": 27, "apple": 53,
"LABEL_28": 28, "backpack": 27,
"LABEL_29": 29, "banana": 52,
"LABEL_3": 3, "banner": 92,
"LABEL_30": 30, "baseball bat": 39,
"LABEL_31": 31, "baseball glove": 40,
"LABEL_32": 32, "bear": 23,
"LABEL_33": 33, "bed": 65,
"LABEL_34": 34, "bench": 15,
"LABEL_35": 35, "bicycle": 2,
"LABEL_36": 36, "bird": 16,
"LABEL_37": 37, "blanket": 93,
"LABEL_38": 38, "blender": 83,
"LABEL_39": 39, "boat": 9,
"LABEL_4": 4, "book": 84,
"LABEL_40": 40, "bottle": 44,
"LABEL_41": 41, "bowl": 51,
"LABEL_42": 42, "branch": 94,
"LABEL_43": 43, "bridge": 95,
"LABEL_44": 44, "broccoli": 56,
"LABEL_45": 45, "building-other": 96,
"LABEL_46": 46, "bus": 6,
"LABEL_47": 47, "bush": 97,
"LABEL_48": 48, "cabinet": 98,
"LABEL_49": 49, "cage": 99,
"LABEL_5": 5, "cake": 61,
"LABEL_50": 50, "car": 3,
"LABEL_51": 51, "cardboard": 100,
"LABEL_52": 52, "carpet": 101,
"LABEL_53": 53, "carrot": 57,
"LABEL_54": 54, "cat": 17,
"LABEL_55": 55, "ceiling-other": 102,
"LABEL_56": 56, "ceiling-tile": 103,
"LABEL_57": 57, "cell phone": 77,
"LABEL_58": 58, "chair": 62,
"LABEL_59": 59, "clock": 85,
"LABEL_6": 6, "cloth": 104,
"LABEL_60": 60, "clothes": 105,
"LABEL_61": 61, "clouds": 106,
"LABEL_62": 62, "couch": 63,
"LABEL_63": 63, "counter": 107,
"LABEL_64": 64, "cow": 21,
"LABEL_65": 65, "cup": 47,
"LABEL_66": 66, "cupboard": 108,
"LABEL_67": 67, "curtain": 109,
"LABEL_68": 68, "desk": 69,
"LABEL_69": 69, "desk-stuff": 110,
"LABEL_7": 7, "dining table": 67,
"LABEL_70": 70, "dirt": 111,
"LABEL_71": 71, "dog": 18,
"LABEL_72": 72, "donut": 60,
"LABEL_73": 73, "door": 71,
"LABEL_74": 74, "door-stuff": 112,
"LABEL_75": 75, "elephant": 22,
"LABEL_76": 76, "eye glasses": 30,
"LABEL_77": 77, "fence": 113,
"LABEL_78": 78, "fire hydrant": 11,
"LABEL_79": 79, "floor-marble": 114,
"LABEL_8": 8, "floor-other": 115,
"LABEL_80": 80, "floor-stone": 116,
"LABEL_81": 81, "floor-tile": 117,
"LABEL_82": 82, "floor-wood": 118,
"LABEL_83": 83, "flower": 119,
"LABEL_84": 84, "fog": 120,
"LABEL_85": 85, "food-other": 121,
"LABEL_86": 86, "fork": 48,
"LABEL_87": 87, "frisbee": 34,
"LABEL_88": 88, "fruit": 122,
"LABEL_89": 89, "furniture-other": 123,
"LABEL_9": 9, "giraffe": 25,
"LABEL_90": 90, "grass": 124,
"LABEL_91": 91, "gravel": 125,
"LABEL_92": 92, "ground-other": 126,
"LABEL_93": 93, "hair brush": 91,
"LABEL_94": 94, "hair drier": 89,
"LABEL_95": 95, "handbag": 31,
"LABEL_96": 96, "hat": 26,
"LABEL_97": 97, "hill": 127,
"LABEL_98": 98, "horse": 19,
"LABEL_99": 99 "hot dog": 58,
"house": 128,
"keyboard": 76,
"kite": 38,
"knife": 49,
"laptop": 73,
"leaves": 129,
"light": 130,
"mat": 131,
"metal": 132,
"microwave": 78,
"mirror": 66,
"mirror-stuff": 133,
"moss": 134,
"motorcycle": 4,
"mountain": 135,
"mouse": 74,
"mud": 136,
"napkin": 137,
"net": 138,
"orange": 55,
"oven": 79,
"paper": 139,
"parking meter": 14,
"pavement": 140,
"person": 1,
"pillow": 141,
"pizza": 59,
"plant-other": 142,
"plastic": 143,
"plate": 45,
"platform": 144,
"playingfield": 145,
"potted plant": 64,
"railing": 146,
"railroad": 147,
"refrigerator": 82,
"remote": 75,
"river": 148,
"road": 149,
"rock": 150,
"roof": 151,
"rug": 152,
"salad": 153,
"sand": 154,
"sandwich": 54,
"scissors": 87,
"sea": 155,
"sheep": 20,
"shelf": 156,
"shoe": 29,
"sink": 81,
"skateboard": 41,
"skis": 35,
"sky-other": 157,
"skyscraper": 158,
"snow": 159,
"snowboard": 36,
"solid-other": 160,
"spoon": 50,
"sports ball": 37,
"stairs": 161,
"stone": 162,
"stop sign": 13,
"straw": 163,
"street sign": 12,
"structural-other": 164,
"suitcase": 33,
"surfboard": 42,
"table": 165,
"teddy bear": 88,
"tennis racket": 43,
"tent": 166,
"textile-other": 167,
"tie": 32,
"toaster": 80,
"toilet": 70,
"toothbrush": 90,
"towel": 168,
"traffic light": 10,
"train": 7,
"tree": 169,
"truck": 8,
"tv": 72,
"umbrella": 28,
"vase": 86,
"vegetable": 170,
"wall-brick": 171,
"wall-concrete": 172,
"wall-other": 173,
"wall-panel": 174,
"wall-stone": 175,
"wall-tile": 176,
"wall-wood": 177,
"water-other": 178,
"waterdrops": 179,
"window": 68,
"window-blind": 180,
"window-other": 181,
"wine glass": 46,
"wood": 182,
"zebra": 24
}, },
"mask_loss_coefficient": 1, "mask_loss_coefficient": 1,
"max_position_embeddings": 1024, "max_position_embeddings": 1024,
@ -539,7 +539,6 @@
"num_hidden_layers": 6, "num_hidden_layers": 6,
"num_queries": 100, "num_queries": 100,
"position_embedding_type": "sine", "position_embedding_type": "sine",
"return_intermediate_layers": true,
"scale_embedding": false, "scale_embedding": false,
"transformers_version": "4.7.0.dev0" "transformers_version": "4.7.0.dev0"
} }

BIN
pytorch_model.bin (Stored with Git LFS)

Binary file not shown.