Improve README
This commit is contained in:
parent
fc15262cfd
commit
060ed34a4a
34
README.md
34
README.md
|
@ -30,6 +30,8 @@ The model is trained using a "bipartite matching loss": one compares the predict
|
|||
|
||||
DETR can be naturally extended to perform panoptic segmentation, by adding a mask head on top of the decoder outputs.
|
||||
|
||||

|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
You can use the raw model for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models.
|
||||
|
@ -39,22 +41,36 @@ You can use the raw model for panoptic segmentation. See the [model hub](https:/
|
|||
Here is how to use this model:
|
||||
|
||||
```python
|
||||
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
||||
from PIL import Image
|
||||
import io
|
||||
import requests
|
||||
from PIL import Image
|
||||
import torch
|
||||
import numpy
|
||||
|
||||
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
||||
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
||||
from transformers.models.detr.feature_extraction_detr import rgb_to_id
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic')
|
||||
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic')
|
||||
feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
|
||||
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
|
||||
|
||||
# prepare image for the model
|
||||
inputs = feature_extractor(images=image, return_tensors="pt")
|
||||
|
||||
# forward pass
|
||||
outputs = model(**inputs)
|
||||
# model predicts COCO classes, bounding boxes, and masks
|
||||
logits = outputs.logits
|
||||
bboxes = outputs.pred_boxes
|
||||
masks = outputs.pred_masks
|
||||
|
||||
# use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
|
||||
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
|
||||
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
|
||||
|
||||
# the segmentation is stored in a special-format png
|
||||
panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
|
||||
panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
|
||||
# retrieve the ids corresponding to each mask
|
||||
panoptic_seg_id = rgb_to_id(panoptic_seg)
|
||||
```
|
||||
|
||||
Currently, both the feature extractor and model support PyTorch.
|
||||
|
|
Loading…
Reference in New Issue