117 lines
4.9 KiB
Markdown
117 lines
4.9 KiB
Markdown
---
|
|
language: en
|
|
datasets:
|
|
- squad_v2
|
|
license: cc-by-4.0
|
|
---
|
|
|
|
# roberta-base for QA
|
|
|
|
This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
|
|
|
|
|
|
## Overview
|
|
**Language model:** roberta-base
|
|
**Language:** English
|
|
**Downstream-task:** Extractive QA
|
|
**Training data:** SQuAD 2.0
|
|
**Eval data:** SQuAD 2.0
|
|
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
|
|
**Infrastructure**: 4x Tesla v100
|
|
|
|
## Hyperparameters
|
|
|
|
```
|
|
batch_size = 96
|
|
n_epochs = 2
|
|
base_LM_model = "roberta-base"
|
|
max_seq_len = 386
|
|
learning_rate = 3e-5
|
|
lr_schedule = LinearWarmup
|
|
warmup_proportion = 0.2
|
|
doc_stride=128
|
|
max_query_length=64
|
|
```
|
|
|
|
## Using a distilled model instead
|
|
Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model.
|
|
|
|
## Usage
|
|
|
|
### In Haystack
|
|
Haystack is an NLP framework by deepset. You can use this model in a Hasytack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
|
|
```python
|
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
|
# or
|
|
reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
|
|
```
|
|
For a complete example of ``roberta-base-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system)
|
|
|
|
### In Transformers
|
|
```python
|
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
|
|
|
model_name = "deepset/roberta-base-squad2"
|
|
|
|
# a) Get predictions
|
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
QA_input = {
|
|
'question': 'Why is model conversion important?',
|
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
|
}
|
|
res = nlp(QA_input)
|
|
|
|
# b) Load model & tokenizer
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
```
|
|
|
|
## Performance
|
|
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
|
|
|
```
|
|
"exact": 79.87029394424324,
|
|
"f1": 82.91251169582613,
|
|
|
|
"total": 11873,
|
|
"HasAns_exact": 77.93522267206478,
|
|
"HasAns_f1": 84.02838248389763,
|
|
"HasAns_total": 5928,
|
|
"NoAns_exact": 81.79983179142137,
|
|
"NoAns_f1": 81.79983179142137,
|
|
"NoAns_total": 5945
|
|
```
|
|
|
|
## Authors
|
|
**Branden Chan:** branden.chan@deepset.ai
|
|
**Timo Möller:** timo.moelle@deepset.ai
|
|
**Malte Pietsch:** malte.pietsch@deepset.ai
|
|
**Tanay Soni:** tanay.soni@deepset.ai
|
|
|
|
## About us
|
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
|
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/>
|
|
</div>
|
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
|
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/>
|
|
</div>
|
|
</div>
|
|
|
|
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
|
|
|
|
|
|
Some of our other work:
|
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
|
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>. You can also <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">join us on <img alt="slack" class="h-7 inline-block m-0" style="margin: 0" src="https://huggingface.co/spaces/deepset/README/resolve/main/Slack_RGB.png"/></a></strong></p>
|
|
|
|
Get in touch:
|
|
|
|
|
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|