121 lines
4.0 KiB
Markdown
121 lines
4.0 KiB
Markdown
---
|
|
datasets:
|
|
- squad_v2
|
|
license: cc-by-4.0
|
|
---
|
|
|
|
# MiniLM-L12-H384-uncased for QA
|
|
|
|
## Overview
|
|
**Language model:** microsoft/MiniLM-L12-H384-uncased
|
|
**Language:** English
|
|
**Downstream-task:** Extractive QA
|
|
**Training data:** SQuAD 2.0
|
|
**Eval data:** SQuAD 2.0
|
|
**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)
|
|
**Infrastructure**: 1x Tesla v100
|
|
|
|
## Hyperparameters
|
|
|
|
```
|
|
seed=42
|
|
batch_size = 12
|
|
n_epochs = 4
|
|
base_LM_model = "microsoft/MiniLM-L12-H384-uncased"
|
|
max_seq_len = 384
|
|
learning_rate = 4e-5
|
|
lr_schedule = LinearWarmup
|
|
warmup_proportion = 0.2
|
|
doc_stride=128
|
|
max_query_length=64
|
|
grad_acc_steps=4
|
|
```
|
|
|
|
## Performance
|
|
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
|
```
|
|
"exact": 76.13071675229513,
|
|
"f1": 79.49786500219953,
|
|
"total": 11873,
|
|
"HasAns_exact": 78.35695006747639,
|
|
"HasAns_f1": 85.10090269418276,
|
|
"HasAns_total": 5928,
|
|
"NoAns_exact": 73.91084945332211,
|
|
"NoAns_f1": 73.91084945332211,
|
|
"NoAns_total": 5945
|
|
```
|
|
|
|
## Usage
|
|
|
|
### In Transformers
|
|
```python
|
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
|
|
|
model_name = "deepset/minilm-uncased-squad2"
|
|
|
|
# a) Get predictions
|
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
QA_input = {
|
|
'question': 'Why is model conversion important?',
|
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
|
}
|
|
res = nlp(QA_input)
|
|
|
|
# b) Load model & tokenizer
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
```
|
|
|
|
### In FARM
|
|
|
|
```python
|
|
from farm.modeling.adaptive_model import AdaptiveModel
|
|
from farm.modeling.tokenization import Tokenizer
|
|
from farm.infer import Inferencer
|
|
|
|
model_name = "deepset/minilm-uncased-squad2"
|
|
|
|
# a) Get predictions
|
|
nlp = Inferencer.load(model_name, task_type="question_answering")
|
|
QA_input = [{"questions": ["Why is model conversion important?"],
|
|
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
|
|
res = nlp.inference_from_dicts(dicts=QA_input)
|
|
|
|
# b) Load model & tokenizer
|
|
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
|
|
tokenizer = Tokenizer.load(model_name)
|
|
```
|
|
|
|
### In haystack
|
|
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
|
|
```python
|
|
reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2")
|
|
# or
|
|
reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2")
|
|
```
|
|
|
|
|
|
## Authors
|
|
Vaishali Pal `vaishali.pal [at] deepset.ai`
|
|
Branden Chan: `branden.chan [at] deepset.ai`
|
|
Timo Möller: `timo.moeller [at] deepset.ai`
|
|
Malte Pietsch: `malte.pietsch [at] deepset.ai`
|
|
Tanay Soni: `tanay.soni [at] deepset.ai`
|
|
|
|
## About us
|
|

|
|
|
|
We bring NLP to the industry via open source!
|
|
Our focus: Industry specific language models & large scale QA systems.
|
|
|
|
Some of our work:
|
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
|
- [FARM](https://github.com/deepset-ai/FARM)
|
|
- [Haystack](https://github.com/deepset-ai/haystack/)
|
|
|
|
Get in touch:
|
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
|
|
|
By the way: [we're hiring!](https://apply.workable.com/deepset/)
|