48 lines
1.2 KiB
Markdown
48 lines
1.2 KiB
Markdown
---
|
||
language:
|
||
- zh
|
||
thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png
|
||
tags:
|
||
- pytorch
|
||
- token-classification
|
||
- bert
|
||
- zh
|
||
license: gpl-3.0
|
||
datasets:
|
||
metrics:
|
||
---
|
||
|
||
# CKIP BERT Base Chinese
|
||
|
||
This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).
|
||
|
||
這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。
|
||
|
||
## Homepage
|
||
|
||
* https://github.com/ckiplab/ckip-transformers
|
||
|
||
## Contributers
|
||
|
||
* [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer)
|
||
|
||
## Usage
|
||
|
||
Please use BertTokenizerFast as tokenizer instead of AutoTokenizer.
|
||
|
||
請使用 BertTokenizerFast 而非 AutoTokenizer。
|
||
|
||
```
|
||
from transformers import (
|
||
BertTokenizerFast,
|
||
AutoModel,
|
||
)
|
||
|
||
tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese')
|
||
model = AutoModel.from_pretrained('ckiplab/bert-base-chinese-ner')
|
||
```
|
||
|
||
For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers.
|
||
|
||
有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
|