Update README.md
This commit is contained in:
parent
67681fe9d5
commit
64fd5fcb92
128
README.md
128
README.md
|
@ -1 +1,127 @@
|
|||
Model pretrained on 760h~ of Turkish speech data.
|
||||
---
|
||||
language: tr
|
||||
datasets:
|
||||
- common_voice
|
||||
metrics:
|
||||
- wer
|
||||
tags:
|
||||
- audio
|
||||
- automatic-speech-recognition
|
||||
- speech
|
||||
- xlsr-fine-tuning-week
|
||||
license: apache-2.0
|
||||
model-index:
|
||||
- name: Wav2Vec2-Base Turkish by Ceyda Cinarel
|
||||
results:
|
||||
- task:
|
||||
name: Speech Recognition
|
||||
type: automatic-speech-recognition
|
||||
dataset:
|
||||
name: Common Voice tr
|
||||
type: common_voice
|
||||
args: tr
|
||||
metrics:
|
||||
- name: Test WER
|
||||
type: wer
|
||||
value: 29.30
|
||||
---
|
||||
|
||||
# Wav2Vec2-Base-960-Turkish
|
||||
|
||||
# TBA
|
||||
Pretrained Turkish model [ceyda/wav2vec2-base-760](https://huggingface.co/ceyda/wav2vec2-base-760). Fine-tuned on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice)
|
||||
When using this model, make sure that your speech input is sampled at 16kHz.
|
||||
|
||||
## Usage
|
||||
|
||||
The model can be used directly (without a language model) as follows:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import torchaudio
|
||||
from datasets import load_dataset
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||
|
||||
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
|
||||
|
||||
processor = Wav2Vec2Processor.from_pretrained("ceyda/wav2vec2-base-960-turkish")
|
||||
model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-base-960-turkish")
|
||||
|
||||
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to read the aduio files as arrays
|
||||
def speech_file_to_array_fn(batch):
|
||||
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
||||
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
||||
return batch
|
||||
|
||||
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
||||
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
||||
|
||||
predicted_ids = torch.argmax(logits, dim=-1)
|
||||
|
||||
print("Prediction:", processor.batch_decode(predicted_ids))
|
||||
print("Reference:", test_dataset["sentence"][:2])
|
||||
```
|
||||
|
||||
|
||||
## Evaluation
|
||||
|
||||
The model can be evaluated as follows on the Turkish test data of Common Voice.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import torchaudio
|
||||
from datasets import load_dataset, load_metric
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||
import re
|
||||
|
||||
test_dataset = load_dataset("common_voice", "tr", split="test")
|
||||
wer = load_metric("wer")
|
||||
|
||||
processor = Wav2Vec2Processor.from_pretrained("ceyda/wav2vec2-base-960-turkish")
|
||||
model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-base-960-turkish")
|
||||
model.to("cuda")
|
||||
|
||||
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\‘\\”\\'\\`…\\’»«]'
|
||||
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to read the audio files as arrays
|
||||
def speech_file_to_array_fn(batch):
|
||||
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
||||
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
||||
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
||||
return batch
|
||||
|
||||
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to read the aduio files as arrays
|
||||
def evaluate(batch):
|
||||
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
||||
|
||||
pred_ids = torch.argmax(logits, dim=-1)
|
||||
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
||||
return batch
|
||||
|
||||
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
||||
|
||||
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
||||
```
|
||||
|
||||
**Test Result**: XX.XX % (TBA)
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
The Common Voice `train`, `validation` datasets were used for training.
|
||||
|
||||
The script used for training can be found [here](https://github.com/cceyda/wav2vec2)
|
Loading…
Reference in New Issue