From 64fd5fcb92c84b3ab1eb7210b556fa2b96716d7e Mon Sep 17 00:00:00 2001 From: Ceyda Cinarel Date: Thu, 1 Apr 2021 00:20:49 +0000 Subject: [PATCH] Update README.md --- README.md | 128 +++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 127 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index a23f509..ff1f6f6 100644 --- a/README.md +++ b/README.md @@ -1 +1,127 @@ -Model pretrained on 760h~ of Turkish speech data. \ No newline at end of file +--- +language: tr +datasets: +- common_voice +metrics: +- wer +tags: +- audio +- automatic-speech-recognition +- speech +- xlsr-fine-tuning-week +license: apache-2.0 +model-index: +- name: Wav2Vec2-Base Turkish by Ceyda Cinarel + results: + - task: + name: Speech Recognition + type: automatic-speech-recognition + dataset: + name: Common Voice tr + type: common_voice + args: tr + metrics: + - name: Test WER + type: wer + value: 29.30 +--- + +# Wav2Vec2-Base-960-Turkish + +# TBA +Pretrained Turkish model [ceyda/wav2vec2-base-760](https://huggingface.co/ceyda/wav2vec2-base-760). Fine-tuned on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice) +When using this model, make sure that your speech input is sampled at 16kHz. + +## Usage + +The model can be used directly (without a language model) as follows: + +```python +import torch +import torchaudio +from datasets import load_dataset +from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor + +test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") + +processor = Wav2Vec2Processor.from_pretrained("ceyda/wav2vec2-base-960-turkish") +model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-base-960-turkish") + +resampler = torchaudio.transforms.Resample(48_000, 16_000) + +# Preprocessing the datasets. +# We need to read the aduio files as arrays +def speech_file_to_array_fn(batch): + speech_array, sampling_rate = torchaudio.load(batch["path"]) + batch["speech"] = resampler(speech_array).squeeze().numpy() + return batch + +test_dataset = test_dataset.map(speech_file_to_array_fn) +inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) + +with torch.no_grad(): + logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits + +predicted_ids = torch.argmax(logits, dim=-1) + +print("Prediction:", processor.batch_decode(predicted_ids)) +print("Reference:", test_dataset["sentence"][:2]) +``` + + +## Evaluation + +The model can be evaluated as follows on the Turkish test data of Common Voice. + +```python +import torch +import torchaudio +from datasets import load_dataset, load_metric +from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor +import re + +test_dataset = load_dataset("common_voice", "tr", split="test") +wer = load_metric("wer") + +processor = Wav2Vec2Processor.from_pretrained("ceyda/wav2vec2-base-960-turkish") +model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-base-960-turkish") +model.to("cuda") + +chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\‘\\”\\'\\`…\\’»«]' +resampler = torchaudio.transforms.Resample(48_000, 16_000) + +# Preprocessing the datasets. +# We need to read the audio files as arrays +def speech_file_to_array_fn(batch): + batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + speech_array, sampling_rate = torchaudio.load(batch["path"]) + batch["speech"] = resampler(speech_array).squeeze().numpy() + return batch + +test_dataset = test_dataset.map(speech_file_to_array_fn) + +# Preprocessing the datasets. +# We need to read the aduio files as arrays +def evaluate(batch): + inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) + + with torch.no_grad(): + logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits + + pred_ids = torch.argmax(logits, dim=-1) + batch["pred_strings"] = processor.batch_decode(pred_ids) + return batch + +result = test_dataset.map(evaluate, batched=True, batch_size=8) + +print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) +``` + +**Test Result**: XX.XX % (TBA) + + +## Training + +The Common Voice `train`, `validation` datasets were used for training. + +The script used for training can be found [here](https://github.com/cceyda/wav2vec2) \ No newline at end of file