34 lines
1.0 KiB
Python
34 lines
1.0 KiB
Python
import gradio as gr
|
||
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
||
|
||
|
||
def inference(img):
|
||
model_path = "clipseg-rd64-refined"
|
||
processor = AutoProcessor.from_pretrained(model_path)
|
||
model = CLIPSegForImageSegmentation.from_pretrained(model_path)
|
||
|
||
texts = ["a cat", "a remote", "a blanket"]
|
||
inputs = processor(text=texts, images=[img] * len(texts), padding=True, return_tensors="pt")
|
||
|
||
outputs = model(**inputs)
|
||
|
||
logits = outputs.logits
|
||
print(logits.shape)
|
||
return logits.shape
|
||
|
||
examples=[['example_cat.jpg']]
|
||
|
||
with gr.Blocks() as demo:
|
||
gr.Markdown(
|
||
"""
|
||
# Semantic segmentation:clipseg-rd64-refined
|
||
这是clipseg-rd64-refined的Gradio Demo,用于语义分割。
|
||
""")
|
||
with gr.Row():
|
||
image_input = gr.Image(type="pil")
|
||
text_output = gr.Textbox()
|
||
image_button = gr.Button("上传")
|
||
image_button.click(inference, inputs=image_input, outputs=text_output)
|
||
gr.Examples(examples,inputs=image_input)
|
||
|
||
demo.launch(server_name="0.0.0.0") |