import gradio as gr from transformers import AutoProcessor, CLIPSegForImageSegmentation def inference(img): model_path = "clipseg-rd64-refined" processor = AutoProcessor.from_pretrained(model_path) model = CLIPSegForImageSegmentation.from_pretrained(model_path) texts = ["a cat", "a remote", "a blanket"] inputs = processor(text=texts, images=[img] * len(texts), padding=True, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits print(logits.shape) return logits.shape examples=[['example_cat.jpg']] with gr.Blocks() as demo: gr.Markdown( """ # Semantic segmentation:clipseg-rd64-refined 这是clipseg-rd64-refined的Gradio Demo,用于语义分割。 """) with gr.Row(): image_input = gr.Image(type="pil") text_output = gr.Textbox() image_button = gr.Button("上传") image_button.click(inference, inputs=image_input, outputs=text_output) gr.Examples(examples,inputs=image_input) demo.launch(server_name="0.0.0.0")