61 lines
1.8 KiB
Python
61 lines
1.8 KiB
Python
import gradio as gr
|
|
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
|
|
|
|
|
|
def inference(img):
|
|
pretrained_model_path = "git-large-coco"
|
|
|
|
processor = AutoProcessor.from_pretrained(pretrained_model_path)
|
|
model = AutoModelForCausalLM.from_pretrained(pretrained_model_path)
|
|
|
|
pixel_values = processor(images=img, return_tensors="pt").pixel_values
|
|
|
|
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
|
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
return generated_caption
|
|
|
|
title = "Image to text:git-large-coco"
|
|
description = "Gradio Demo for git-large-coco. To use it, simply upload your image, or click one of the examples to load them."
|
|
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>"
|
|
examples=[['example_cat.jpg'],['Masahiro.png']]
|
|
|
|
demo = gr.Interface(
|
|
fn=inference,
|
|
inputs=[gr.inputs.Image(type="pil")],
|
|
outputs=gr.outputs.Textbox(),
|
|
title=title,
|
|
description=description,
|
|
article=article,
|
|
examples=examples)
|
|
|
|
demo.launch()
|
|
|
|
|
|
##
|
|
|
|
|
|
# model_dir = "hub/animegan2-pytorch-main"
|
|
# model_dir_weight = "hub/checkpoints/face_paint_512_v1.pt"
|
|
#
|
|
# model2 = torch.hub.load(
|
|
# model_dir,
|
|
# "generator",
|
|
# pretrained=True,
|
|
# progress=False,
|
|
# source="local"
|
|
# )
|
|
# model1 = torch.load(model_dir_weight)
|
|
# face2paint = torch.hub.load(
|
|
# model_dir, 'face2paint',
|
|
# size=512,side_by_side=False,
|
|
# source="local"
|
|
# )
|
|
#
|
|
# def inference(img, ver):
|
|
# if ver == 'version 2 (🔺 robustness,🔻 stylization)':
|
|
# out = face2paint(model2, img)
|
|
# else:
|
|
# out = face2paint(model1, img)
|
|
# return out
|
|
#
|