import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig def inference(img): pretrained_model_path = "git-large-coco" processor = AutoProcessor.from_pretrained(pretrained_model_path) model = AutoModelForCausalLM.from_pretrained(pretrained_model_path) pixel_values = processor(images=img, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption title = "Image to text:git-large-coco" description = "Gradio Demo for git-large-coco. To use it, simply upload your image, or click one of the examples to load them." article = "

Github Repo Pytorch

visitor badge

" examples=[['example_cat.jpg'],['Masahiro.png']] demo = gr.Interface( fn=inference, inputs=[gr.inputs.Image(type="pil")], outputs=gr.outputs.Textbox(), title=title, description=description, article=article, examples=examples) demo.launch() ## # model_dir = "hub/animegan2-pytorch-main" # model_dir_weight = "hub/checkpoints/face_paint_512_v1.pt" # # model2 = torch.hub.load( # model_dir, # "generator", # pretrained=True, # progress=False, # source="local" # ) # model1 = torch.load(model_dir_weight) # face2paint = torch.hub.load( # model_dir, 'face2paint', # size=512,side_by_side=False, # source="local" # ) # # def inference(img, ver): # if ver == 'version 2 (🔺 robustness,🔻 stylization)': # out = face2paint(model2, img) # else: # out = face2paint(model1, img) # return out #