initial
This commit is contained in:
commit
aeb84b9280
|
@ -0,0 +1,25 @@
|
|||
# please visit https://github.com/xfyun/aiges/releases to get stable and suitable iamges.
|
||||
|
||||
FROM docker.io/library/python:3.8.9
|
||||
|
||||
|
||||
RUN sed -i 's/deb.debian.org/mirrors.ustc.edu.cn/g' /etc/apt/sources.list
|
||||
RUN sed -i 's|security.debian.org/debian-security|mirrors.ustc.edu.cn/debian-security|g' /etc/apt/sources.list
|
||||
|
||||
|
||||
WORKDIR /home/user/app
|
||||
RUN useradd -m -u 1000 user
|
||||
RUN chown -R 1000.1000 /home/user
|
||||
|
||||
|
||||
RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/
|
||||
|
||||
|
||||
RUN pip install --no-cache-dir pip==22.3.1
|
||||
RUN --mount=target=requirements.txt,source=requirements.txt pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
|
||||
COPY --chown=1000 ./ /home/user/app
|
||||
|
||||
|
||||
CMD ["python3", "app.py"]
|
|
@ -0,0 +1 @@
|
|||
Subproject commit a0a563c41338cbe0d23dfb4bfc3e243c518e5768
|
|
@ -0,0 +1,365 @@
|
|||
import random
|
||||
import gradio as gr
|
||||
import imageio
|
||||
import numpy as np
|
||||
import onnx
|
||||
import onnxruntime as rt
|
||||
from numpy.random import RandomState
|
||||
from skimage import transform
|
||||
|
||||
|
||||
def get_inter(r1, r2):
|
||||
h_inter = max(min(r1[3], r2[3]) - max(r1[1], r2[1]), 0)
|
||||
w_inter = max(min(r1[2], r2[2]) - max(r1[0], r2[0]), 0)
|
||||
return h_inter * w_inter
|
||||
|
||||
|
||||
def iou(r1, r2):
|
||||
s1 = (r1[2] - r1[0]) * (r1[3] - r1[1])
|
||||
s2 = (r2[2] - r2[0]) * (r2[3] - r2[1])
|
||||
i = get_inter(r1, r2)
|
||||
return i / (s1 + s2 - i)
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(0.5, 0.5, 0.5), stride=32):
|
||||
# Resize and pad image while meeting stride-multiple constraints
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
|
||||
# Compute padding
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape != new_unpad: # resize
|
||||
im = transform.resize(im, (new_unpad[1], new_unpad[0]))
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
|
||||
im_new = np.full((new_unpad[1] + top + bottom, new_unpad[0] + left + right, 3), color, dtype=np.float32)
|
||||
im_new[top:new_unpad[1] + top, left:new_unpad[0] + left] = im
|
||||
return im_new
|
||||
|
||||
|
||||
def nms(pred, conf_thres, iou_thres, max_instance=20): # pred (anchor_num, 5 + cls_num)
|
||||
nc = pred.shape[1] - 5
|
||||
candidates = [list() for x in range(nc)]
|
||||
for x in pred:
|
||||
if x[4] < conf_thres:
|
||||
continue
|
||||
cls = np.argmax(x[5:])
|
||||
p = x[4] * x[5 + cls]
|
||||
if conf_thres <= p:
|
||||
box = (x[0] - x[2] / 2, x[1] - x[3] / 2, x[0] + x[2] / 2, x[1] + x[3] / 2) # xywh2xyxy
|
||||
candidates[cls].append([p, box])
|
||||
result = [list() for x in range(nc)]
|
||||
for i, candidate in enumerate(candidates):
|
||||
candidate = sorted(candidate, key=lambda a: a[0], reverse=True)
|
||||
candidate = candidate[:max_instance]
|
||||
for x in candidate:
|
||||
ok = True
|
||||
for r in result[i]:
|
||||
if iou(r[1], x[1]) > iou_thres:
|
||||
ok = False
|
||||
break
|
||||
if ok:
|
||||
result[i].append(x)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self):
|
||||
self.detector = None
|
||||
self.encoder = None
|
||||
self.g_synthesis = None
|
||||
self.g_mapping = None
|
||||
self.detector_stride = None
|
||||
self.detector_imgsz = None
|
||||
self.detector_class_names = None
|
||||
self.anime_seg = None
|
||||
self.w_avg = None
|
||||
self.load_models()
|
||||
|
||||
def load_models(self):
|
||||
g_mapping_path = "fbanime-gan/g_mapping.onnx"
|
||||
g_synthesis_path = "fbanime-gan/g_synthesis.onnx"
|
||||
encoder_path = "fbanime-gan/encoder.onnx"
|
||||
detector_path = "fbanime-gan/waifu_dect.onnx"
|
||||
anime_seg_path ="anime-seg/isnetis.onnx"
|
||||
|
||||
providers = ['CPUExecutionProvider']
|
||||
gpu_providers = ['CUDAExecutionProvider']
|
||||
g_mapping = onnx.load(g_mapping_path)
|
||||
w_avg = [x for x in g_mapping.graph.initializer if x.name == "w_avg"][0]
|
||||
w_avg = np.frombuffer(w_avg.raw_data, dtype=np.float32)[np.newaxis, :]
|
||||
w_avg = w_avg.repeat(16, axis=0)[np.newaxis, :]
|
||||
self.w_avg = w_avg
|
||||
self.g_mapping = rt.InferenceSession(g_mapping_path, providers=gpu_providers + providers)
|
||||
self.g_synthesis = rt.InferenceSession(g_synthesis_path, providers=gpu_providers + providers)
|
||||
self.encoder = rt.InferenceSession(encoder_path, providers=providers)
|
||||
self.detector = rt.InferenceSession(detector_path, providers=providers)
|
||||
detector_meta = self.detector.get_modelmeta().custom_metadata_map
|
||||
self.detector_stride = int(detector_meta['stride'])
|
||||
self.detector_imgsz = 1088
|
||||
self.detector_class_names = eval(detector_meta['names'])
|
||||
self.anime_seg = rt.InferenceSession(anime_seg_path, providers=providers)
|
||||
|
||||
def get_img(self, w, noise=0):
|
||||
img = self.g_synthesis.run(None, {'w': w, "noise": np.asarray([noise], dtype=np.float32)})[0]
|
||||
return (img.transpose(0, 2, 3, 1) * 127.5 + 128).clip(0, 255).astype(np.uint8)[0]
|
||||
|
||||
def get_w(self, z, psi1, psi2):
|
||||
return self.g_mapping.run(None, {'z': z, 'psi': np.asarray([psi1, psi2], dtype=np.float32)})[0]
|
||||
|
||||
def remove_bg(self, img, s=1024):
|
||||
img0 = img
|
||||
img = (img / 255).astype(np.float32)
|
||||
h, w = h0, w0 = img.shape[:-1]
|
||||
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
||||
ph, pw = s - h, s - w
|
||||
img_input = np.zeros([s, s, 3], dtype=np.float32)
|
||||
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = transform.resize(img, (h, w))
|
||||
img_input = np.transpose(img_input, (2, 0, 1))
|
||||
img_input = img_input[np.newaxis, :]
|
||||
mask = self.anime_seg.run(None, {'img': img_input})[0][0]
|
||||
mask = np.transpose(mask, (1, 2, 0))
|
||||
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
|
||||
mask = transform.resize(mask, (h0, w0))
|
||||
img0 = (img0 * mask + 255 * (1 - mask)).astype(np.uint8)
|
||||
return img0
|
||||
|
||||
def encode_img(self, img):
|
||||
img = transform.resize(((img / 255 - 0.5) / 0.5), (256, 256)).transpose(2, 0, 1)[np.newaxis, :].astype(
|
||||
np.float32)
|
||||
return self.encoder.run(None, {'img': img})[0] + self.w_avg
|
||||
|
||||
def detect(self, im0, conf_thres, iou_thres, detail=False):
|
||||
if im0 is None:
|
||||
return []
|
||||
img = letterbox((im0 / 255).astype(np.float32), (self.detector_imgsz, self.detector_imgsz),
|
||||
stride=self.detector_stride)
|
||||
# Convert
|
||||
img = img.transpose(2, 0, 1)
|
||||
img = img[np.newaxis, :]
|
||||
pred = self.detector.run(None, {'images': img})[0][0]
|
||||
dets = nms(pred, conf_thres, iou_thres)
|
||||
imgs = []
|
||||
# Print results
|
||||
s = '%gx%g ' % img.shape[2:] # print string
|
||||
for i, det in enumerate(dets):
|
||||
n = len(det)
|
||||
s += f"{n} {self.detector_class_names[i]}{'s' * (n > 1)}, " # add to string
|
||||
if detail:
|
||||
print(s)
|
||||
waifu_rects = []
|
||||
head_rects = []
|
||||
body_rects = []
|
||||
|
||||
for i, det in enumerate(dets):
|
||||
for x in det:
|
||||
# Rescale boxes from img_size to im0 size
|
||||
wr = im0.shape[1] / img.shape[3]
|
||||
hr = im0.shape[0] / img.shape[2]
|
||||
x[1] = (int(x[1][0] * wr), int(x[1][1] * hr),
|
||||
int(x[1][2] * wr), int(x[1][3] * hr))
|
||||
if i == 0:
|
||||
head_rects.append(x[1])
|
||||
elif i == 1:
|
||||
body_rects.append(x[1])
|
||||
elif i == 2:
|
||||
waifu_rects.append(x[1])
|
||||
for j, waifu_rect in enumerate(waifu_rects):
|
||||
msg = f'waifu {j + 1} '
|
||||
head_num = 0
|
||||
body_num = 0
|
||||
hr, br = None, None
|
||||
for r in head_rects:
|
||||
if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.75:
|
||||
hr = r
|
||||
head_num += 1
|
||||
if head_num != 1:
|
||||
if detail:
|
||||
print(msg + f'head num error: {head_num}')
|
||||
continue
|
||||
for r in body_rects:
|
||||
if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.65:
|
||||
br = r
|
||||
body_num += 1
|
||||
if body_num != 1:
|
||||
if detail:
|
||||
print(msg + f'body num error: {body_num}')
|
||||
continue
|
||||
bounds = (min(waifu_rect[0], hr[0], br[0]),
|
||||
min(waifu_rect[1], hr[1], br[1]),
|
||||
max(waifu_rect[2], hr[2], br[2]),
|
||||
max(waifu_rect[3], hr[3], br[3]))
|
||||
if (bounds[2] - bounds[0]) / (bounds[3] - bounds[1]) > 0.7:
|
||||
if detail:
|
||||
print(msg + "ratio out of limit")
|
||||
continue
|
||||
expand_pixel = (bounds[3] - bounds[1]) // 20
|
||||
bounds = [max(bounds[0] - expand_pixel // 2, 0),
|
||||
max(bounds[1] - expand_pixel, 0),
|
||||
min(bounds[2] + expand_pixel // 2, im0.shape[1]),
|
||||
min(bounds[3] + expand_pixel, im0.shape[0]),
|
||||
]
|
||||
# corp and resize
|
||||
w = bounds[2] - bounds[0]
|
||||
h = bounds[3] - bounds[1]
|
||||
bounds[3] += h % 2
|
||||
h += h % 2
|
||||
r = min(512 / w, 1024 / h)
|
||||
pw, ph = int(512 / r - w), int(1024 / r - h)
|
||||
bounds_tmp = (bounds[0] - pw // 2, bounds[1] - ph // 2,
|
||||
bounds[2] + pw // 2 + pw % 2, bounds[3] + ph // 2 + ph % 2)
|
||||
bounds = (max(0, bounds_tmp[0]), max(0, bounds_tmp[1]),
|
||||
min(im0.shape[1], bounds_tmp[2]), min(im0.shape[0], bounds_tmp[3]))
|
||||
dl = bounds[0] - bounds_tmp[0]
|
||||
dr = bounds[2] - bounds_tmp[2]
|
||||
dt = bounds[1] - bounds_tmp[1]
|
||||
db = bounds[3] - bounds_tmp[3]
|
||||
w = bounds_tmp[2] - bounds_tmp[0]
|
||||
h = bounds_tmp[3] - bounds_tmp[1]
|
||||
temp_img = np.full((h, w, 3), 255, dtype=np.uint8)
|
||||
temp_img[dt:h + db, dl:w + dr] = im0[bounds[1]:bounds[3], bounds[0]:bounds[2]]
|
||||
temp_img = transform.resize(temp_img, (1024, 512), preserve_range=True).astype(np.uint8)
|
||||
imgs.append(temp_img)
|
||||
return imgs
|
||||
|
||||
def gen_video(self, w1, w2, noise, path, frame_num=10):
|
||||
video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M')
|
||||
lin = np.linspace(0, 1, frame_num)
|
||||
for i in range(0, frame_num):
|
||||
img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise)
|
||||
video.append_data(img)
|
||||
for i in reversed(range(0, frame_num)):
|
||||
img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise)
|
||||
video.append_data(img)
|
||||
video.close()
|
||||
|
||||
def get_thumbnail(img):
|
||||
img_new = np.full((256, 384, 3), 200, dtype=np.uint8)
|
||||
img_new[:, 128:256] = transform.resize(img, (256, 128), preserve_range=True)
|
||||
return img_new
|
||||
|
||||
|
||||
def gen_fn(seed, random_seed, psi1, psi2, noise):
|
||||
if random_seed:
|
||||
seed = random.randint(0, 2 ** 32 - 1)
|
||||
z = RandomState(int(seed)).randn(1, 1024)
|
||||
w = model.get_w(z.astype(dtype=np.float32), psi1, psi2)
|
||||
img_out = model.get_img(w, noise)
|
||||
return img_out, seed, w, get_thumbnail(img_out)
|
||||
|
||||
|
||||
def encode_img_fn(img, noise):
|
||||
if img is None:
|
||||
return "please upload a image", None, None, None, None
|
||||
img = model.remove_bg(img)
|
||||
imgs = model.detect(img, 0.2, 0.03)
|
||||
if len(imgs) == 0:
|
||||
return "failed to detect anime character", None, None, None, None
|
||||
w = model.encode_img(imgs[0])
|
||||
img_out = model.get_img(w, noise)
|
||||
return "success", imgs[0], img_out, w, get_thumbnail(img_out)
|
||||
|
||||
|
||||
def gen_video_fn(w1, w2, noise, frame):
|
||||
if w1 is None or w2 is None:
|
||||
return None
|
||||
model.gen_video(w1, w2, noise, "video.mp4", int(frame))
|
||||
return "video.mp4"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = Model()
|
||||
|
||||
app = gr.Blocks()
|
||||
with app:
|
||||
gr.Markdown("# full-body anime GAN\n\n"
|
||||
"\n\n")
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("generate image"):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
gr.Markdown("generate image")
|
||||
with gr.Row():
|
||||
gen_input1 = gr.Slider(minimum=0, maximum=2 ** 32 - 1, step=1, value=0, label="seed")
|
||||
gen_input2 = gr.Checkbox(label="Random", value=True)
|
||||
gen_input3 = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="truncation psi 1")
|
||||
gen_input4 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="truncation psi 2")
|
||||
gen_input5 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="noise strength")
|
||||
with gr.Group():
|
||||
gen_submit = gr.Button("Generate", variant="primary")
|
||||
with gr.Column():
|
||||
gen_output1 = gr.Image(label="output image")
|
||||
select_img_input_w1 = gr.Variable()
|
||||
select_img_input_img1 = gr.Variable()
|
||||
|
||||
with gr.TabItem("encode image"):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
gr.Markdown("you'd better upload a standing full-body image")
|
||||
encode_img_input = gr.Image(label="input image")
|
||||
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 5)]
|
||||
encode_img_examples = gr.Dataset(components=[encode_img_input], samples=examples_data)
|
||||
with gr.Group():
|
||||
encode_img_submit = gr.Button("Run", variant="primary")
|
||||
with gr.Column():
|
||||
encode_img_output1 = gr.Textbox(label="output message")
|
||||
with gr.Row():
|
||||
encode_img_output2 = gr.Image(label="detected")
|
||||
encode_img_output3 = gr.Image(label="encoded")
|
||||
select_img_input_w2 = gr.Variable()
|
||||
select_img_input_img2 = gr.Variable()
|
||||
|
||||
with gr.TabItem("generate video"):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
gr.Markdown("generate video between 2 images")
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
select_img1_dropdown = gr.Radio(label="Select image 1", value="current generated image",
|
||||
choices=["current generated image",
|
||||
"current encoded image"], type="index")
|
||||
with gr.Group():
|
||||
select_img1_button = gr.Button("Select", variant="primary")
|
||||
select_img1_output_img = gr.Image(label="selected image 1")
|
||||
select_img1_output_w = gr.Variable()
|
||||
with gr.Column():
|
||||
select_img2_dropdown = gr.Radio(label="Select image 2", value="current generated image",
|
||||
choices=["current generated image",
|
||||
"current encoded image"], type="index")
|
||||
with gr.Group():
|
||||
select_img2_button = gr.Button("Select", variant="primary")
|
||||
select_img2_output_img = gr.Image(label="selected image 2")
|
||||
select_img2_output_w = gr.Variable()
|
||||
generate_video_frame = gr.Slider(minimum=10, maximum=30, step=1, label="frame", value=15)
|
||||
with gr.Group():
|
||||
generate_video_button = gr.Button("Generate", variant="primary")
|
||||
with gr.Column():
|
||||
generate_video_output = gr.Video(label="output video")
|
||||
gen_submit.click(gen_fn, [gen_input1, gen_input2, gen_input3, gen_input4, gen_input5],
|
||||
[gen_output1, gen_input1, select_img_input_w1, select_img_input_img1])
|
||||
encode_img_submit.click(encode_img_fn, [encode_img_input, gen_input5],
|
||||
[encode_img_output1, encode_img_output2, encode_img_output3, select_img_input_w2,
|
||||
select_img_input_img2])
|
||||
encode_img_examples.click(lambda x: x[0], [encode_img_examples], [encode_img_input])
|
||||
select_img1_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
|
||||
[select_img1_dropdown, select_img_input_img1, select_img_input_img2,
|
||||
select_img_input_w1, select_img_input_w2],
|
||||
[select_img1_output_img, select_img1_output_w])
|
||||
select_img2_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
|
||||
[select_img2_dropdown, select_img_input_img1, select_img_input_img2,
|
||||
select_img_input_w1, select_img_input_w2],
|
||||
[select_img2_output_img, select_img2_output_w])
|
||||
generate_video_button.click(gen_video_fn,
|
||||
[select_img1_output_w, select_img2_output_w, gen_input5, generate_video_frame],
|
||||
[generate_video_output])
|
||||
app.launch()
|
Binary file not shown.
After Width: | Height: | Size: 34 KiB |
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
Binary file not shown.
After Width: | Height: | Size: 50 KiB |
|
@ -0,0 +1 @@
|
|||
Subproject commit 79c6af6b789fb18533eb9885fc21680ee29d235e
|
|
@ -0,0 +1,6 @@
|
|||
gradio==3.21.0
|
||||
transformers==4.27.1
|
||||
onnx
|
||||
onnxruntime-gpu
|
||||
scikit-image
|
||||
imageio-ffmpeg
|
Loading…
Reference in New Issue