commit aeb84b9280d9e7ce219a367a35526ab2d92af3b3 Author: SOULOFCINDER <841135647@qq.com> Date: Tue Apr 4 11:08:04 2023 +0800 initial diff --git a/full_body_anime_gan/Dockerfile b/full_body_anime_gan/Dockerfile new file mode 100644 index 0000000..d525920 --- /dev/null +++ b/full_body_anime_gan/Dockerfile @@ -0,0 +1,25 @@ +# please visit https://github.com/xfyun/aiges/releases to get stable and suitable iamges. + +FROM docker.io/library/python:3.8.9 + + +RUN sed -i 's/deb.debian.org/mirrors.ustc.edu.cn/g' /etc/apt/sources.list +RUN sed -i 's|security.debian.org/debian-security|mirrors.ustc.edu.cn/debian-security|g' /etc/apt/sources.list + + +WORKDIR /home/user/app +RUN useradd -m -u 1000 user +RUN chown -R 1000.1000 /home/user + + +RUN pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/ + + +RUN pip install --no-cache-dir pip==22.3.1 +RUN --mount=target=requirements.txt,source=requirements.txt pip install --no-cache-dir -r requirements.txt + + +COPY --chown=1000 ./ /home/user/app + + +CMD ["python3", "app.py"] \ No newline at end of file diff --git a/full_body_anime_gan/anime-seg b/full_body_anime_gan/anime-seg new file mode 160000 index 0000000..a0a563c --- /dev/null +++ b/full_body_anime_gan/anime-seg @@ -0,0 +1 @@ +Subproject commit a0a563c41338cbe0d23dfb4bfc3e243c518e5768 diff --git a/full_body_anime_gan/app.py b/full_body_anime_gan/app.py new file mode 100644 index 0000000..19404f8 --- /dev/null +++ b/full_body_anime_gan/app.py @@ -0,0 +1,365 @@ +import random +import gradio as gr +import imageio +import numpy as np +import onnx +import onnxruntime as rt +from numpy.random import RandomState +from skimage import transform + + +def get_inter(r1, r2): + h_inter = max(min(r1[3], r2[3]) - max(r1[1], r2[1]), 0) + w_inter = max(min(r1[2], r2[2]) - max(r1[0], r2[0]), 0) + return h_inter * w_inter + + +def iou(r1, r2): + s1 = (r1[2] - r1[0]) * (r1[3] - r1[1]) + s2 = (r2[2] - r2[0]) * (r2[3] - r2[1]) + i = get_inter(r1, r2) + return i / (s1 + s2 - i) + + +def letterbox(im, new_shape=(640, 640), color=(0.5, 0.5, 0.5), stride=32): + # Resize and pad image while meeting stride-multiple constraints + shape = im.shape[:2] # current shape [height, width] + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + + # Compute padding + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding + + dw /= 2 # divide padding into 2 sides + dh /= 2 + + if shape != new_unpad: # resize + im = transform.resize(im, (new_unpad[1], new_unpad[0])) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + + im_new = np.full((new_unpad[1] + top + bottom, new_unpad[0] + left + right, 3), color, dtype=np.float32) + im_new[top:new_unpad[1] + top, left:new_unpad[0] + left] = im + return im_new + + +def nms(pred, conf_thres, iou_thres, max_instance=20): # pred (anchor_num, 5 + cls_num) + nc = pred.shape[1] - 5 + candidates = [list() for x in range(nc)] + for x in pred: + if x[4] < conf_thres: + continue + cls = np.argmax(x[5:]) + p = x[4] * x[5 + cls] + if conf_thres <= p: + box = (x[0] - x[2] / 2, x[1] - x[3] / 2, x[0] + x[2] / 2, x[1] + x[3] / 2) # xywh2xyxy + candidates[cls].append([p, box]) + result = [list() for x in range(nc)] + for i, candidate in enumerate(candidates): + candidate = sorted(candidate, key=lambda a: a[0], reverse=True) + candidate = candidate[:max_instance] + for x in candidate: + ok = True + for r in result[i]: + if iou(r[1], x[1]) > iou_thres: + ok = False + break + if ok: + result[i].append(x) + + return result + + +class Model: + def __init__(self): + self.detector = None + self.encoder = None + self.g_synthesis = None + self.g_mapping = None + self.detector_stride = None + self.detector_imgsz = None + self.detector_class_names = None + self.anime_seg = None + self.w_avg = None + self.load_models() + + def load_models(self): + g_mapping_path = "fbanime-gan/g_mapping.onnx" + g_synthesis_path = "fbanime-gan/g_synthesis.onnx" + encoder_path = "fbanime-gan/encoder.onnx" + detector_path = "fbanime-gan/waifu_dect.onnx" + anime_seg_path ="anime-seg/isnetis.onnx" + + providers = ['CPUExecutionProvider'] + gpu_providers = ['CUDAExecutionProvider'] + g_mapping = onnx.load(g_mapping_path) + w_avg = [x for x in g_mapping.graph.initializer if x.name == "w_avg"][0] + w_avg = np.frombuffer(w_avg.raw_data, dtype=np.float32)[np.newaxis, :] + w_avg = w_avg.repeat(16, axis=0)[np.newaxis, :] + self.w_avg = w_avg + self.g_mapping = rt.InferenceSession(g_mapping_path, providers=gpu_providers + providers) + self.g_synthesis = rt.InferenceSession(g_synthesis_path, providers=gpu_providers + providers) + self.encoder = rt.InferenceSession(encoder_path, providers=providers) + self.detector = rt.InferenceSession(detector_path, providers=providers) + detector_meta = self.detector.get_modelmeta().custom_metadata_map + self.detector_stride = int(detector_meta['stride']) + self.detector_imgsz = 1088 + self.detector_class_names = eval(detector_meta['names']) + self.anime_seg = rt.InferenceSession(anime_seg_path, providers=providers) + + def get_img(self, w, noise=0): + img = self.g_synthesis.run(None, {'w': w, "noise": np.asarray([noise], dtype=np.float32)})[0] + return (img.transpose(0, 2, 3, 1) * 127.5 + 128).clip(0, 255).astype(np.uint8)[0] + + def get_w(self, z, psi1, psi2): + return self.g_mapping.run(None, {'z': z, 'psi': np.asarray([psi1, psi2], dtype=np.float32)})[0] + + def remove_bg(self, img, s=1024): + img0 = img + img = (img / 255).astype(np.float32) + h, w = h0, w0 = img.shape[:-1] + h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) + ph, pw = s - h, s - w + img_input = np.zeros([s, s, 3], dtype=np.float32) + img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = transform.resize(img, (h, w)) + img_input = np.transpose(img_input, (2, 0, 1)) + img_input = img_input[np.newaxis, :] + mask = self.anime_seg.run(None, {'img': img_input})[0][0] + mask = np.transpose(mask, (1, 2, 0)) + mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] + mask = transform.resize(mask, (h0, w0)) + img0 = (img0 * mask + 255 * (1 - mask)).astype(np.uint8) + return img0 + + def encode_img(self, img): + img = transform.resize(((img / 255 - 0.5) / 0.5), (256, 256)).transpose(2, 0, 1)[np.newaxis, :].astype( + np.float32) + return self.encoder.run(None, {'img': img})[0] + self.w_avg + + def detect(self, im0, conf_thres, iou_thres, detail=False): + if im0 is None: + return [] + img = letterbox((im0 / 255).astype(np.float32), (self.detector_imgsz, self.detector_imgsz), + stride=self.detector_stride) + # Convert + img = img.transpose(2, 0, 1) + img = img[np.newaxis, :] + pred = self.detector.run(None, {'images': img})[0][0] + dets = nms(pred, conf_thres, iou_thres) + imgs = [] + # Print results + s = '%gx%g ' % img.shape[2:] # print string + for i, det in enumerate(dets): + n = len(det) + s += f"{n} {self.detector_class_names[i]}{'s' * (n > 1)}, " # add to string + if detail: + print(s) + waifu_rects = [] + head_rects = [] + body_rects = [] + + for i, det in enumerate(dets): + for x in det: + # Rescale boxes from img_size to im0 size + wr = im0.shape[1] / img.shape[3] + hr = im0.shape[0] / img.shape[2] + x[1] = (int(x[1][0] * wr), int(x[1][1] * hr), + int(x[1][2] * wr), int(x[1][3] * hr)) + if i == 0: + head_rects.append(x[1]) + elif i == 1: + body_rects.append(x[1]) + elif i == 2: + waifu_rects.append(x[1]) + for j, waifu_rect in enumerate(waifu_rects): + msg = f'waifu {j + 1} ' + head_num = 0 + body_num = 0 + hr, br = None, None + for r in head_rects: + if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.75: + hr = r + head_num += 1 + if head_num != 1: + if detail: + print(msg + f'head num error: {head_num}') + continue + for r in body_rects: + if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.65: + br = r + body_num += 1 + if body_num != 1: + if detail: + print(msg + f'body num error: {body_num}') + continue + bounds = (min(waifu_rect[0], hr[0], br[0]), + min(waifu_rect[1], hr[1], br[1]), + max(waifu_rect[2], hr[2], br[2]), + max(waifu_rect[3], hr[3], br[3])) + if (bounds[2] - bounds[0]) / (bounds[3] - bounds[1]) > 0.7: + if detail: + print(msg + "ratio out of limit") + continue + expand_pixel = (bounds[3] - bounds[1]) // 20 + bounds = [max(bounds[0] - expand_pixel // 2, 0), + max(bounds[1] - expand_pixel, 0), + min(bounds[2] + expand_pixel // 2, im0.shape[1]), + min(bounds[3] + expand_pixel, im0.shape[0]), + ] + # corp and resize + w = bounds[2] - bounds[0] + h = bounds[3] - bounds[1] + bounds[3] += h % 2 + h += h % 2 + r = min(512 / w, 1024 / h) + pw, ph = int(512 / r - w), int(1024 / r - h) + bounds_tmp = (bounds[0] - pw // 2, bounds[1] - ph // 2, + bounds[2] + pw // 2 + pw % 2, bounds[3] + ph // 2 + ph % 2) + bounds = (max(0, bounds_tmp[0]), max(0, bounds_tmp[1]), + min(im0.shape[1], bounds_tmp[2]), min(im0.shape[0], bounds_tmp[3])) + dl = bounds[0] - bounds_tmp[0] + dr = bounds[2] - bounds_tmp[2] + dt = bounds[1] - bounds_tmp[1] + db = bounds[3] - bounds_tmp[3] + w = bounds_tmp[2] - bounds_tmp[0] + h = bounds_tmp[3] - bounds_tmp[1] + temp_img = np.full((h, w, 3), 255, dtype=np.uint8) + temp_img[dt:h + db, dl:w + dr] = im0[bounds[1]:bounds[3], bounds[0]:bounds[2]] + temp_img = transform.resize(temp_img, (1024, 512), preserve_range=True).astype(np.uint8) + imgs.append(temp_img) + return imgs + + def gen_video(self, w1, w2, noise, path, frame_num=10): + video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M') + lin = np.linspace(0, 1, frame_num) + for i in range(0, frame_num): + img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise) + video.append_data(img) + for i in reversed(range(0, frame_num)): + img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise) + video.append_data(img) + video.close() + +def get_thumbnail(img): + img_new = np.full((256, 384, 3), 200, dtype=np.uint8) + img_new[:, 128:256] = transform.resize(img, (256, 128), preserve_range=True) + return img_new + + +def gen_fn(seed, random_seed, psi1, psi2, noise): + if random_seed: + seed = random.randint(0, 2 ** 32 - 1) + z = RandomState(int(seed)).randn(1, 1024) + w = model.get_w(z.astype(dtype=np.float32), psi1, psi2) + img_out = model.get_img(w, noise) + return img_out, seed, w, get_thumbnail(img_out) + + +def encode_img_fn(img, noise): + if img is None: + return "please upload a image", None, None, None, None + img = model.remove_bg(img) + imgs = model.detect(img, 0.2, 0.03) + if len(imgs) == 0: + return "failed to detect anime character", None, None, None, None + w = model.encode_img(imgs[0]) + img_out = model.get_img(w, noise) + return "success", imgs[0], img_out, w, get_thumbnail(img_out) + + +def gen_video_fn(w1, w2, noise, frame): + if w1 is None or w2 is None: + return None + model.gen_video(w1, w2, noise, "video.mp4", int(frame)) + return "video.mp4" + + +if __name__ == '__main__': + model = Model() + + app = gr.Blocks() + with app: + gr.Markdown("# full-body anime GAN\n\n" + "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.full-body-anime-gan)\n\n") + with gr.Tabs(): + with gr.TabItem("generate image"): + with gr.Row(): + with gr.Column(): + gr.Markdown("generate image") + with gr.Row(): + gen_input1 = gr.Slider(minimum=0, maximum=2 ** 32 - 1, step=1, value=0, label="seed") + gen_input2 = gr.Checkbox(label="Random", value=True) + gen_input3 = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="truncation psi 1") + gen_input4 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="truncation psi 2") + gen_input5 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="noise strength") + with gr.Group(): + gen_submit = gr.Button("Generate", variant="primary") + with gr.Column(): + gen_output1 = gr.Image(label="output image") + select_img_input_w1 = gr.Variable() + select_img_input_img1 = gr.Variable() + + with gr.TabItem("encode image"): + with gr.Row(): + with gr.Column(): + gr.Markdown("you'd better upload a standing full-body image") + encode_img_input = gr.Image(label="input image") + examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 5)] + encode_img_examples = gr.Dataset(components=[encode_img_input], samples=examples_data) + with gr.Group(): + encode_img_submit = gr.Button("Run", variant="primary") + with gr.Column(): + encode_img_output1 = gr.Textbox(label="output message") + with gr.Row(): + encode_img_output2 = gr.Image(label="detected") + encode_img_output3 = gr.Image(label="encoded") + select_img_input_w2 = gr.Variable() + select_img_input_img2 = gr.Variable() + + with gr.TabItem("generate video"): + with gr.Row(): + with gr.Column(): + gr.Markdown("generate video between 2 images") + with gr.Row(): + with gr.Column(): + select_img1_dropdown = gr.Radio(label="Select image 1", value="current generated image", + choices=["current generated image", + "current encoded image"], type="index") + with gr.Group(): + select_img1_button = gr.Button("Select", variant="primary") + select_img1_output_img = gr.Image(label="selected image 1") + select_img1_output_w = gr.Variable() + with gr.Column(): + select_img2_dropdown = gr.Radio(label="Select image 2", value="current generated image", + choices=["current generated image", + "current encoded image"], type="index") + with gr.Group(): + select_img2_button = gr.Button("Select", variant="primary") + select_img2_output_img = gr.Image(label="selected image 2") + select_img2_output_w = gr.Variable() + generate_video_frame = gr.Slider(minimum=10, maximum=30, step=1, label="frame", value=15) + with gr.Group(): + generate_video_button = gr.Button("Generate", variant="primary") + with gr.Column(): + generate_video_output = gr.Video(label="output video") + gen_submit.click(gen_fn, [gen_input1, gen_input2, gen_input3, gen_input4, gen_input5], + [gen_output1, gen_input1, select_img_input_w1, select_img_input_img1]) + encode_img_submit.click(encode_img_fn, [encode_img_input, gen_input5], + [encode_img_output1, encode_img_output2, encode_img_output3, select_img_input_w2, + select_img_input_img2]) + encode_img_examples.click(lambda x: x[0], [encode_img_examples], [encode_img_input]) + select_img1_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2), + [select_img1_dropdown, select_img_input_img1, select_img_input_img2, + select_img_input_w1, select_img_input_w2], + [select_img1_output_img, select_img1_output_w]) + select_img2_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2), + [select_img2_dropdown, select_img_input_img1, select_img_input_img2, + select_img_input_w1, select_img_input_w2], + [select_img2_output_img, select_img2_output_w]) + generate_video_button.click(gen_video_fn, + [select_img1_output_w, select_img2_output_w, gen_input5, generate_video_frame], + [generate_video_output]) + app.launch() \ No newline at end of file diff --git a/full_body_anime_gan/examples/01.jpg b/full_body_anime_gan/examples/01.jpg new file mode 100644 index 0000000..756ae4c Binary files /dev/null and b/full_body_anime_gan/examples/01.jpg differ diff --git a/full_body_anime_gan/examples/02.jpg b/full_body_anime_gan/examples/02.jpg new file mode 100644 index 0000000..628c954 Binary files /dev/null and b/full_body_anime_gan/examples/02.jpg differ diff --git a/full_body_anime_gan/examples/03.jpg b/full_body_anime_gan/examples/03.jpg new file mode 100644 index 0000000..4346e91 Binary files /dev/null and b/full_body_anime_gan/examples/03.jpg differ diff --git a/full_body_anime_gan/examples/04.jpg b/full_body_anime_gan/examples/04.jpg new file mode 100644 index 0000000..ef9c769 Binary files /dev/null and b/full_body_anime_gan/examples/04.jpg differ diff --git a/full_body_anime_gan/fbanime-gan b/full_body_anime_gan/fbanime-gan new file mode 160000 index 0000000..79c6af6 --- /dev/null +++ b/full_body_anime_gan/fbanime-gan @@ -0,0 +1 @@ +Subproject commit 79c6af6b789fb18533eb9885fc21680ee29d235e diff --git a/full_body_anime_gan/requirements.txt b/full_body_anime_gan/requirements.txt new file mode 100644 index 0000000..d10f389 --- /dev/null +++ b/full_body_anime_gan/requirements.txt @@ -0,0 +1,6 @@ +gradio==3.21.0 +transformers==4.27.1 +onnx +onnxruntime-gpu +scikit-image +imageio-ffmpeg \ No newline at end of file