Compare commits
10 Commits
00312f85e4
...
3c51a1a282
Author | SHA1 | Date |
---|---|---|
|
3c51a1a282 | |
|
06acdc64f3 | |
|
82b0136dbd | |
|
fc0a115cae | |
|
7207383528 | |
|
e05068a73a | |
|
d60c294e85 | |
|
a3e4b9a10c | |
|
59c6888e46 | |
|
b794013651 |
123
README.md
123
README.md
|
@ -1,27 +1,126 @@
|
|||
---
|
||||
tags:
|
||||
- object-detection
|
||||
|
||||
---
|
||||
|
||||
# Model Card for detr-doc-table-detection
|
||||
|
||||
# Model Details
|
||||
|
||||
detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50).
|
||||
|
||||
- **Developed by:** Taha Douaji
|
||||
- **Shared by [Optional]:** Taha Douaji
|
||||
- **Model type:** Object Detection
|
||||
- **Language(s) (NLP):** More information needed
|
||||
- **License:** More information needed
|
||||
- **Parent Model:** [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- **Resources for more information:**
|
||||
- [Model Demo Space](https://huggingface.co/spaces/trevbeers/pdf-table-extraction)
|
||||
- [Associated Paper](https://arxiv.org/abs/2005.12872)
|
||||
|
||||
|
||||
## Model description
|
||||
detr-doc-table-detection is a model trained to detect both Bordered and Borderless tables in documents based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
|
||||
|
||||
## Training data
|
||||
# Uses
|
||||
|
||||
|
||||
## Direct Use
|
||||
This model can be used for the task of object detection.
|
||||
|
||||
## Out-of-Scope Use
|
||||
|
||||
The model should not be used to intentionally create hostile or alienating environments for people.
|
||||
|
||||
# Bias, Risks, and Limitations
|
||||
|
||||
|
||||
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
||||
|
||||
|
||||
|
||||
## Recommendations
|
||||
|
||||
|
||||
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
||||
|
||||
# Training Details
|
||||
|
||||
## Training Data
|
||||
|
||||
The model was trained on ICDAR2019 Table Dataset
|
||||
|
||||
### How to use
|
||||
|
||||
# Environmental Impact
|
||||
|
||||
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
||||
|
||||
|
||||
# Citation
|
||||
|
||||
|
||||
**BibTeX:**
|
||||
|
||||
|
||||
```bibtex
|
||||
@article{DBLP:journals/corr/abs-2005-12872,
|
||||
author = {Nicolas Carion and
|
||||
Francisco Massa and
|
||||
Gabriel Synnaeve and
|
||||
Nicolas Usunier and
|
||||
Alexander Kirillov and
|
||||
Sergey Zagoruyko},
|
||||
title = {End-to-End Object Detection with Transformers},
|
||||
journal = {CoRR},
|
||||
volume = {abs/2005.12872},
|
||||
year = {2020},
|
||||
url = {https://arxiv.org/abs/2005.12872},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {2005.12872},
|
||||
timestamp = {Thu, 28 May 2020 17:38:09 +0200},
|
||||
biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib},
|
||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
# Model Card Authors [optional]
|
||||
|
||||
Taha Douaji in collaboration with Ezi Ozoani and the Hugging Face team
|
||||
|
||||
|
||||
# Model Card Contact
|
||||
|
||||
More information needed
|
||||
|
||||
# How to Get Started with the Model
|
||||
|
||||
Use the code below to get started with the model.
|
||||
|
||||
|
||||
```python
|
||||
from transformers import DetrFeatureExtractor, DetrForObjectDetection
|
||||
from transformers import DetrImageProcessor, DetrForObjectDetection
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
image = Image.open("Image path")
|
||||
feature_extractor = DetrFeatureExtractor.from_pretrained('TahaDouaji/detr-doc-table-detection')
|
||||
model = DetrForObjectDetection.from_pretrained('TahaDouaji/detr-doc-table-detection')
|
||||
inputs = feature_extractor(images=image, return_tensors="pt")
|
||||
|
||||
image = Image.open("IMAGE_PATH")
|
||||
|
||||
processor = DetrImageProcessor.from_pretrained("TahaDouaji/detr-doc-table-detection")
|
||||
model = DetrForObjectDetection.from_pretrained("TahaDouaji/detr-doc-table-detection")
|
||||
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
# model predicts bounding boxes and corresponding COCO classes
|
||||
logits = outputs.logits
|
||||
bboxes = outputs.pred_boxes
|
||||
|
||||
# convert outputs (bounding boxes and class logits) to COCO API
|
||||
# let's only keep detections with score > 0.9
|
||||
target_sizes = torch.tensor([image.size[::-1]])
|
||||
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
||||
|
||||
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
||||
box = [round(i, 2) for i in box.tolist()]
|
||||
print(
|
||||
f"Detected {model.config.id2label[label.item()]} with confidence "
|
||||
f"{round(score.item(), 3)} at location {box}"
|
||||
)
|
||||
```
|
Loading…
Reference in New Issue