Update README.md
This commit is contained in:
parent
7207383528
commit
fc0a115cae
178
README.md
178
README.md
|
@ -1,3 +1,181 @@
|
|||
---
|
||||
tags:
|
||||
- object-detection
|
||||
|
||||
---
|
||||
|
||||
# Model Card for detr-doc-table-detection
|
||||
|
||||
# Model Details
|
||||
|
||||
## Model Description
|
||||
|
||||
detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50).
|
||||
|
||||
- **Developed by:** Taha Douaji
|
||||
- **Shared by [Optional]:** Taha Douaji
|
||||
- **Model type:** Object Detection
|
||||
- **Language(s) (NLP):** More information needed
|
||||
- **License:** More information needed
|
||||
- **Parent Model:** [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- **Resources for more information:**
|
||||
- [Model Demo Space](https://huggingface.co/spaces/trevbeers/pdf-table-extraction)
|
||||
- [Associated Paper](https://arxiv.org/abs/2005.12872)
|
||||
|
||||
|
||||
|
||||
# Uses
|
||||
|
||||
|
||||
## Direct Use
|
||||
This model can be used for the task of object detection.
|
||||
|
||||
## Downstream Use [Optional]
|
||||
|
||||
More information needed.
|
||||
|
||||
## Out-of-Scope Use
|
||||
|
||||
The model should not be used to intentionally create hostile or alienating environments for people.
|
||||
|
||||
# Bias, Risks, and Limitations
|
||||
|
||||
|
||||
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
||||
|
||||
|
||||
|
||||
## Recommendations
|
||||
|
||||
|
||||
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
||||
|
||||
# Training Details
|
||||
|
||||
## Training Data
|
||||
|
||||
The model was trained on ICDAR2019 Table Dataset
|
||||
|
||||
## Training Procedure
|
||||
|
||||
|
||||
### Preprocessing
|
||||
|
||||
More information needed
|
||||
|
||||
### Speeds, Sizes, Times
|
||||
More information needed
|
||||
|
||||
|
||||
# Evaluation
|
||||
|
||||
|
||||
## Testing Data, Factors & Metrics
|
||||
|
||||
### Testing Data
|
||||
|
||||
More information needed
|
||||
|
||||
|
||||
### Factors
|
||||
More information needed
|
||||
|
||||
### Metrics
|
||||
|
||||
More information needed
|
||||
|
||||
|
||||
## Results
|
||||
|
||||
More information needed
|
||||
|
||||
|
||||
# Model Examination
|
||||
|
||||
More information needed
|
||||
|
||||
# Environmental Impact
|
||||
|
||||
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
||||
|
||||
- **Hardware Type:** More information needed
|
||||
- **Hours used:** More information needed
|
||||
- **Cloud Provider:** More information needed
|
||||
- **Compute Region:** More information needed
|
||||
- **Carbon Emitted:** More information needed
|
||||
|
||||
# Technical Specifications [optional]
|
||||
|
||||
## Model Architecture and Objective
|
||||
|
||||
More information needed
|
||||
|
||||
## Compute Infrastructure
|
||||
|
||||
More information needed
|
||||
|
||||
### Hardware
|
||||
|
||||
|
||||
More information needed
|
||||
|
||||
### Software
|
||||
|
||||
More information needed.
|
||||
|
||||
# Citation
|
||||
|
||||
|
||||
**BibTeX:**
|
||||
|
||||
|
||||
```bibtex
|
||||
@article{DBLP:journals/corr/abs-2005-12872,
|
||||
author = {Nicolas Carion and
|
||||
Francisco Massa and
|
||||
Gabriel Synnaeve and
|
||||
Nicolas Usunier and
|
||||
Alexander Kirillov and
|
||||
Sergey Zagoruyko},
|
||||
title = {End-to-End Object Detection with Transformers},
|
||||
journal = {CoRR},
|
||||
volume = {abs/2005.12872},
|
||||
year = {2020},
|
||||
url = {https://arxiv.org/abs/2005.12872},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {2005.12872},
|
||||
timestamp = {Thu, 28 May 2020 17:38:09 +0200},
|
||||
biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib},
|
||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
# Glossary [optional]
|
||||
More information needed
|
||||
|
||||
# More Information [optional]
|
||||
More information needed
|
||||
|
||||
|
||||
# Model Card Authors [optional]
|
||||
|
||||
Taha Douaji in collaboration with Ezi Ozoani and the Hugging Face team
|
||||
|
||||
|
||||
# Model Card Contact
|
||||
|
||||
More information needed
|
||||
|
||||
# How to Get Started with the Model
|
||||
|
||||
Use the code below to get started with the model.
|
||||
|
||||
<details>
|
||||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
from transformers import DetrImageProcessor, DetrForObjectDetection
|
||||
import torch
|
||||
|
|
Loading…
Reference in New Issue