Compare commits
10 Commits
749c92aad4
...
9f026f803d
Author | SHA1 | Date |
---|---|---|
|
9f026f803d | |
|
1e27d38bd5 | |
|
0633fcb2df | |
|
929248b923 | |
|
0d5c3c1afa | |
|
f0b787701a | |
|
3dda40e019 | |
|
ad68922328 | |
|
02852c872e | |
|
8dc972275d |
|
@ -0,0 +1,129 @@
|
||||||
|
---
|
||||||
|
pipeline_tag: 'visual-question-answering'
|
||||||
|
tags:
|
||||||
|
- visual-question-answering
|
||||||
|
inference: false
|
||||||
|
languages:
|
||||||
|
- en
|
||||||
|
license: bsd-3-clause
|
||||||
|
---
|
||||||
|
|
||||||
|
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
||||||
|
|
||||||
|
Model card for BLIP trained on visual question answering- base architecture (with ViT base backbone).
|
||||||
|
|
||||||
|
|  |
|
||||||
|
|:--:|
|
||||||
|
| <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
|
||||||
|
|
||||||
|
## TL;DR
|
||||||
|
|
||||||
|
Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
|
||||||
|
|
||||||
|
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
You can use this model for conditional and un-conditional image captioning
|
||||||
|
|
||||||
|
### Using the Pytorch model
|
||||||
|
|
||||||
|
#### Running the model on CPU
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary> Click to expand </summary>
|
||||||
|
|
||||||
|
```python
|
||||||
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import BlipProcessor, BlipForQuestionAnswering
|
||||||
|
|
||||||
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||||||
|
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
||||||
|
|
||||||
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||||
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||||
|
|
||||||
|
question = "how many dogs are in the picture?"
|
||||||
|
inputs = processor(raw_image, question, return_tensors="pt")
|
||||||
|
|
||||||
|
out = model.generate(**inputs)
|
||||||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
||||||
|
>>> 1
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Running the model on GPU
|
||||||
|
|
||||||
|
##### In full precision
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary> Click to expand </summary>
|
||||||
|
|
||||||
|
```python
|
||||||
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import BlipProcessor, BlipForQuestionAnswering
|
||||||
|
|
||||||
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||||||
|
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to("cuda")
|
||||||
|
|
||||||
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||||
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||||
|
|
||||||
|
question = "how many dogs are in the picture?"
|
||||||
|
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
|
||||||
|
|
||||||
|
out = model.generate(**inputs)
|
||||||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
||||||
|
>>> 1
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
##### In half precision (`float16`)
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary> Click to expand </summary>
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import BlipProcessor, BlipForQuestionAnswering
|
||||||
|
|
||||||
|
processor = BlipProcessor.from_pretrained("ybelkada/blip-vqa-base")
|
||||||
|
model = BlipForQuestionAnswering.from_pretrained("ybelkada/blip-vqa-base", torch_dtype=torch.float16).to("cuda")
|
||||||
|
|
||||||
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||||
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||||
|
|
||||||
|
question = "how many dogs are in the picture?"
|
||||||
|
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
|
||||||
|
|
||||||
|
out = model.generate(**inputs)
|
||||||
|
print(processor.decode(out[0], skip_special_tokens=True))
|
||||||
|
>>> 1
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## BibTex and citation info
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
||||||
|
doi = {10.48550/ARXIV.2201.12086},
|
||||||
|
|
||||||
|
url = {https://arxiv.org/abs/2201.12086},
|
||||||
|
|
||||||
|
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
||||||
|
|
||||||
|
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
||||||
|
|
||||||
|
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
||||||
|
|
||||||
|
publisher = {arXiv},
|
||||||
|
|
||||||
|
year = {2022},
|
||||||
|
|
||||||
|
copyright = {Creative Commons Attribution 4.0 International}
|
||||||
|
}
|
||||||
|
```
|
|
@ -0,0 +1,169 @@
|
||||||
|
{
|
||||||
|
"_commit_hash": null,
|
||||||
|
"architectures": [
|
||||||
|
"BlipForQuestionAnswering"
|
||||||
|
],
|
||||||
|
"image_text_hidden_size": 256,
|
||||||
|
"initializer_factor": 1.0,
|
||||||
|
"logit_scale_init_value": 2.6592,
|
||||||
|
"model_type": "blip",
|
||||||
|
"projection_dim": 512,
|
||||||
|
"text_config": {
|
||||||
|
"_name_or_path": "",
|
||||||
|
"add_cross_attention": false,
|
||||||
|
"architectures": null,
|
||||||
|
"attention_probs_dropout_prob": 0.0,
|
||||||
|
"bad_words_ids": null,
|
||||||
|
"begin_suppress_tokens": null,
|
||||||
|
"bos_token_id": 30522,
|
||||||
|
"chunk_size_feed_forward": 0,
|
||||||
|
"cross_attention_hidden_size": null,
|
||||||
|
"decoder_start_token_id": null,
|
||||||
|
"diversity_penalty": 0.0,
|
||||||
|
"do_sample": false,
|
||||||
|
"early_stopping": false,
|
||||||
|
"encoder_no_repeat_ngram_size": 0,
|
||||||
|
"eos_token_id": 2,
|
||||||
|
"exponential_decay_length_penalty": null,
|
||||||
|
"finetuning_task": null,
|
||||||
|
"forced_bos_token_id": null,
|
||||||
|
"forced_eos_token_id": null,
|
||||||
|
"hidden_act": "gelu",
|
||||||
|
"hidden_dropout_prob": 0.0,
|
||||||
|
"hidden_size": 768,
|
||||||
|
"id2label": {
|
||||||
|
"0": "LABEL_0",
|
||||||
|
"1": "LABEL_1"
|
||||||
|
},
|
||||||
|
"initializer_factor": 1.0,
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 3072,
|
||||||
|
"is_decoder": true,
|
||||||
|
"is_encoder_decoder": false,
|
||||||
|
"label2id": {
|
||||||
|
"LABEL_0": 0,
|
||||||
|
"LABEL_1": 1
|
||||||
|
},
|
||||||
|
"layer_norm_eps": 1e-12,
|
||||||
|
"length_penalty": 1.0,
|
||||||
|
"max_length": 20,
|
||||||
|
"max_position_embeddings": 512,
|
||||||
|
"min_length": 0,
|
||||||
|
"model_type": "blip_text_model",
|
||||||
|
"no_repeat_ngram_size": 0,
|
||||||
|
"num_attention_heads": 8,
|
||||||
|
"num_beam_groups": 1,
|
||||||
|
"num_beams": 1,
|
||||||
|
"num_hidden_layers": 12,
|
||||||
|
"num_return_sequences": 1,
|
||||||
|
"output_attentions": false,
|
||||||
|
"output_hidden_states": false,
|
||||||
|
"output_scores": false,
|
||||||
|
"pad_token_id": 0,
|
||||||
|
"prefix": null,
|
||||||
|
"problem_type": null,
|
||||||
|
"projection_dim": 768,
|
||||||
|
"pruned_heads": {},
|
||||||
|
"remove_invalid_values": false,
|
||||||
|
"repetition_penalty": 1.0,
|
||||||
|
"return_dict": true,
|
||||||
|
"return_dict_in_generate": false,
|
||||||
|
"sep_token_id": 102,
|
||||||
|
"suppress_tokens": null,
|
||||||
|
"task_specific_params": null,
|
||||||
|
"temperature": 1.0,
|
||||||
|
"tf_legacy_loss": false,
|
||||||
|
"tie_encoder_decoder": false,
|
||||||
|
"tie_word_embeddings": true,
|
||||||
|
"tokenizer_class": null,
|
||||||
|
"top_k": 50,
|
||||||
|
"top_p": 1.0,
|
||||||
|
"torch_dtype": null,
|
||||||
|
"torchscript": false,
|
||||||
|
"transformers_version": "4.26.0.dev0",
|
||||||
|
"typical_p": 1.0,
|
||||||
|
"use_bfloat16": false,
|
||||||
|
"use_cache": true,
|
||||||
|
"vocab_size": 30524
|
||||||
|
},
|
||||||
|
"torch_dtype": "float32",
|
||||||
|
"transformers_version": null,
|
||||||
|
"vision_config": {
|
||||||
|
"_name_or_path": "",
|
||||||
|
"add_cross_attention": false,
|
||||||
|
"architectures": null,
|
||||||
|
"attention_dropout": 0.0,
|
||||||
|
"bad_words_ids": null,
|
||||||
|
"begin_suppress_tokens": null,
|
||||||
|
"bos_token_id": null,
|
||||||
|
"chunk_size_feed_forward": 0,
|
||||||
|
"cross_attention_hidden_size": null,
|
||||||
|
"decoder_start_token_id": null,
|
||||||
|
"diversity_penalty": 0.0,
|
||||||
|
"do_sample": false,
|
||||||
|
"dropout": 0.0,
|
||||||
|
"early_stopping": false,
|
||||||
|
"encoder_no_repeat_ngram_size": 0,
|
||||||
|
"eos_token_id": null,
|
||||||
|
"exponential_decay_length_penalty": null,
|
||||||
|
"finetuning_task": null,
|
||||||
|
"forced_bos_token_id": null,
|
||||||
|
"forced_eos_token_id": null,
|
||||||
|
"hidden_act": "gelu",
|
||||||
|
"hidden_size": 768,
|
||||||
|
"id2label": {
|
||||||
|
"0": "LABEL_0",
|
||||||
|
"1": "LABEL_1"
|
||||||
|
},
|
||||||
|
"image_size": 384,
|
||||||
|
"initializer_factor": 1.0,
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 3072,
|
||||||
|
"is_decoder": false,
|
||||||
|
"is_encoder_decoder": false,
|
||||||
|
"label2id": {
|
||||||
|
"LABEL_0": 0,
|
||||||
|
"LABEL_1": 1
|
||||||
|
},
|
||||||
|
"layer_norm_eps": 1e-05,
|
||||||
|
"length_penalty": 1.0,
|
||||||
|
"max_length": 20,
|
||||||
|
"min_length": 0,
|
||||||
|
"model_type": "blip_vision_model",
|
||||||
|
"no_repeat_ngram_size": 0,
|
||||||
|
"num_attention_heads": 12,
|
||||||
|
"num_beam_groups": 1,
|
||||||
|
"num_beams": 1,
|
||||||
|
"num_channels": 3,
|
||||||
|
"num_hidden_layers": 12,
|
||||||
|
"num_return_sequences": 1,
|
||||||
|
"output_attentions": false,
|
||||||
|
"output_hidden_states": false,
|
||||||
|
"output_scores": false,
|
||||||
|
"pad_token_id": null,
|
||||||
|
"patch_size": 16,
|
||||||
|
"prefix": null,
|
||||||
|
"problem_type": null,
|
||||||
|
"projection_dim": 512,
|
||||||
|
"pruned_heads": {},
|
||||||
|
"remove_invalid_values": false,
|
||||||
|
"repetition_penalty": 1.0,
|
||||||
|
"return_dict": true,
|
||||||
|
"return_dict_in_generate": false,
|
||||||
|
"sep_token_id": null,
|
||||||
|
"suppress_tokens": null,
|
||||||
|
"task_specific_params": null,
|
||||||
|
"temperature": 1.0,
|
||||||
|
"tf_legacy_loss": false,
|
||||||
|
"tie_encoder_decoder": false,
|
||||||
|
"tie_word_embeddings": true,
|
||||||
|
"tokenizer_class": null,
|
||||||
|
"top_k": 50,
|
||||||
|
"top_p": 1.0,
|
||||||
|
"torch_dtype": null,
|
||||||
|
"torchscript": false,
|
||||||
|
"transformers_version": "4.26.0.dev0",
|
||||||
|
"typical_p": 1.0,
|
||||||
|
"use_bfloat16": false
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,25 @@
|
||||||
|
{
|
||||||
|
"do_normalize": true,
|
||||||
|
"do_pad": true,
|
||||||
|
"do_rescale": true,
|
||||||
|
"do_resize": true,
|
||||||
|
"image_mean": [
|
||||||
|
0.48145466,
|
||||||
|
0.4578275,
|
||||||
|
0.40821073
|
||||||
|
],
|
||||||
|
"image_processor_type": "BlipImageProcessor",
|
||||||
|
"image_std": [
|
||||||
|
0.26862954,
|
||||||
|
0.26130258,
|
||||||
|
0.27577711
|
||||||
|
],
|
||||||
|
"processor_class": "BlipProcessor",
|
||||||
|
"resample": 3,
|
||||||
|
"rescale_factor": 0.00392156862745098,
|
||||||
|
"size": {
|
||||||
|
"height": 384,
|
||||||
|
"width": 384
|
||||||
|
},
|
||||||
|
"size_divisor": 32
|
||||||
|
}
|
Binary file not shown.
|
@ -0,0 +1,7 @@
|
||||||
|
{
|
||||||
|
"cls_token": "[CLS]",
|
||||||
|
"mask_token": "[MASK]",
|
||||||
|
"pad_token": "[PAD]",
|
||||||
|
"sep_token": "[SEP]",
|
||||||
|
"unk_token": "[UNK]"
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,21 @@
|
||||||
|
{
|
||||||
|
"cls_token": "[CLS]",
|
||||||
|
"do_basic_tokenize": true,
|
||||||
|
"do_lower_case": true,
|
||||||
|
"mask_token": "[MASK]",
|
||||||
|
"model_input_names": [
|
||||||
|
"input_ids",
|
||||||
|
"attention_mask"
|
||||||
|
],
|
||||||
|
"model_max_length": 512,
|
||||||
|
"name_or_path": "ybelkada/blip-image-captioning-base",
|
||||||
|
"never_split": null,
|
||||||
|
"pad_token": "[PAD]",
|
||||||
|
"processor_class": "BlipProcessor",
|
||||||
|
"sep_token": "[SEP]",
|
||||||
|
"special_tokens_map_file": null,
|
||||||
|
"strip_accents": null,
|
||||||
|
"tokenize_chinese_chars": true,
|
||||||
|
"tokenizer_class": "BertTokenizer",
|
||||||
|
"unk_token": "[UNK]"
|
||||||
|
}
|
Loading…
Reference in New Issue