Create README.md
This commit is contained in:
parent
02852c872e
commit
ad68922328
|
@ -0,0 +1,127 @@
|
|||
---
|
||||
tags:
|
||||
- visual-question-answering
|
||||
languages:
|
||||
- en
|
||||
license: bsd-3-clause
|
||||
---
|
||||
|
||||
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
||||
|
||||
Model card for BLIP trained on visual question answering- base architecture (with ViT large backbone).
|
||||
|
||||
|  |
|
||||
|:--:|
|
||||
| <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
|
||||
|
||||
## TL;DR
|
||||
|
||||
Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
|
||||
|
||||
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
|
||||
|
||||
## Usage
|
||||
|
||||
You can use this model for conditional and un-conditional image captioning
|
||||
|
||||
### Using the Pytorch model
|
||||
|
||||
#### Running the model on CPU
|
||||
|
||||
<details>
|
||||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForQuestionAnswering
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||||
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
||||
question = "how many dogs are in the picture?"
|
||||
inputs = processor(raw_image, question, return_tensors="pt")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
>>> 1
|
||||
```
|
||||
</details>
|
||||
|
||||
#### Running the model on GPU
|
||||
|
||||
##### In full precision
|
||||
|
||||
<details>
|
||||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForQuestionAnswering
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||||
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to("cuda")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
||||
question = "how many dogs are in the picture?"
|
||||
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
>>> 1
|
||||
```
|
||||
</details>
|
||||
|
||||
##### In half precision (`float16`)
|
||||
|
||||
<details>
|
||||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForQuestionAnswering
|
||||
|
||||
processor = BlipProcessor.from_pretrained("ybelkada/blip-vqa-base")
|
||||
model = BlipForQuestionAnswering.from_pretrained("ybelkada/blip-vqa-base", torch_dtype=torch.float16).to("cuda")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
||||
question = "how many dogs are in the picture?"
|
||||
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
>>> 1
|
||||
```
|
||||
</details>
|
||||
|
||||
## BibTex and citation info
|
||||
|
||||
```
|
||||
@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
||||
doi = {10.48550/ARXIV.2201.12086},
|
||||
|
||||
url = {https://arxiv.org/abs/2201.12086},
|
||||
|
||||
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
||||
|
||||
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
||||
|
||||
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
||||
|
||||
publisher = {arXiv},
|
||||
|
||||
year = {2022},
|
||||
|
||||
copyright = {Creative Commons Attribution 4.0 International}
|
||||
}
|
||||
```
|
Loading…
Reference in New Issue