Update README.md
This commit is contained in:
parent
af1d88b9ac
commit
25d2acb8e5
38
README.md
38
README.md
|
@ -32,11 +32,12 @@ You can use this model for conditional and un-conditional image captioning
|
|||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForConditionalGeneration
|
||||
|
||||
from transformers import BlipProcessor, BlipForImageCaptioning
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base")
|
||||
processor = BlipProcessor.from_pretrained("ybelkada/blip-image-captioning-base")
|
||||
model = BlipForConditionalGeneration.from_pretrained("ybelkada/blip-image-captioning-base")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
@ -46,13 +47,15 @@ text = "a photography of"
|
|||
inputs = processor(raw_image, text, return_tensors="pt")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
# >>> a photography of a woman and her dog
|
||||
|
||||
# unconditional image captioning
|
||||
inputs = processor(raw_image, return_tensors="pt")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
>>> a woman sitting on the beach with her dog
|
||||
```
|
||||
</details>
|
||||
|
||||
|
@ -64,11 +67,12 @@ print(processor.decode(out[0], skip_special_tokens=True)
|
|||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
|
||||
from transformers import BlipProcessor, BlipForImageCaptioning
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForConditionalGeneration
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base").to("cuda")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
@ -78,13 +82,15 @@ text = "a photography of"
|
|||
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
# >>> a photography of a woman and her dog
|
||||
|
||||
# unconditional image captioning
|
||||
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
>>> a woman sitting on the beach with her dog
|
||||
```
|
||||
</details>
|
||||
|
||||
|
@ -95,7 +101,9 @@ print(processor.decode(out[0], skip_special_tokens=True)
|
|||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BlipProcessor, BlipForImageCaptioning
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForConditionalGeneration
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
|
||||
|
@ -108,13 +116,15 @@ text = "a photography of"
|
|||
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
# >>> a photography of a woman and her dog
|
||||
|
||||
# unconditional image captioning
|
||||
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
>>> a woman sitting on the beach with her dog
|
||||
```
|
||||
</details>
|
||||
|
||||
|
|
Loading…
Reference in New Issue